Для чего нужен шатун: Шатун поршня: назначение, конструкция, основные неисправности
Шатун поршня: назначение, конструкция, основные неисправности
Рассмотрим конструкционные особенности шатуна поршня, основные проблемы, которые могут возникать при его работе, и способы их профилактики.
Конструкция шатуна
Шатун передает энергию от поршня к коленчатому валу. При этом он совершает два вида движения: круговое и возвратно-поступательное. Первое происходит в месте соединения его нижней головки с коленвалом, второе – в зоне соединения верхней головки с поршнем. Вследствие такой конструкции шатун постоянно испытывает высокие нагрузки во время работы.
Шатун поршня состоит из следующих элементов.
Поршневая головка
Верхняя (поршневая) головка представляет собой цельную неразборную конструкцию, которая соединяется с поршнем при помощи пальца: плавающего или фиксированного.
В верхней головке плавающего пальца обычно расположены бронзовые или биметаллические втулки.
Чтобы обеспечить необходимый уровень натяга, фиксированный палец вставляется в цилиндрическое отверстие меньшего диаметра.
Так как на верхнюю головку действуют очень высокие нагрузки, она имеет трапециевидную форму. Это позволяет увеличить опорную поверхность при работе поршня.
Кривошипная головка
Нижняя (кривошипная) головка соединяет коленчатый вал и шатун. Многие шатуны обладают разъемной кривошипной головкой, что зависит от метода сборки двигателя. Крышку головки с шатуном соединяют болты, штифты или бандажное крепление.
На каждый шатун можно установить только ту крышку, которой он оснащался с завода, так как она обладает определенным весом и размером. При ремонте данную деталь заменить нельзя.
По расположению стержня головка может быть прямой или косой. Последняя характерна для V-образных двигателей и используется для уменьшения размеров силового агрегата.
В нижней части шатунной головки располагаются подшипники скольжения, схожие с коренными вкладышами коленчатого вала. Их изготавливают из стальной ленты, которая изнутри обработана антифрикционным материалом с высокими износостойкими характеристиками. Особенностью этого слоя является то, что он работает только в присутствии моторного масла, а в режиме «сухого трения» очень быстро истирается.
Покрытие может наноситься как на заводе-изготовителе, так и при дальнейшем обслуживании двигателя в условиях гаража или автосервиса. Для защиты подшипников скольжения и других деталей силового агрегата оптимально подходит антифрикционное твердосмазочное покрытие MODENGY Для деталей ДВС.
Чаще всего его применяют на юбках поршней, дроссельных заслонках, вкладышах распредвала, подшипниках скольжения.
MODENGY Для деталей ДВС обладает следующими преимуществами:
- Имеет широкий диапазон рабочих температур: от -70 до +260 °C
-
Повышает КПД двигателя
-
Снижает трение и износ
-
Защищает детали от задиров в режиме масляного голодания
-
Снижает расход топлива
-
Отверждается при комнатной температуре
Совместно с покрытием рекомендуется использовать Специальный очиститель‑активатор MODENGY. Он не только убирает разнородные загрязнения с поверхностей, но и образует пленку, улучшающую адгезию покрытия с основанием.
Силовой стержень
Силовой стержень многих шатунов имеет двутавровую форму и расширяется от верхней головки к нижней. В дизельных двигателях используются более прочные и массивные детали, чем в бензиновых. В спорткарах устанавливаются шатуны, изготовленные из алюминия. Благодаря такому решению снижается масса автомобиля.
Все шатуны должны иметь одинаковый вес, в противном случае усилятся вибрации при работе силового агрегата.
Из чего изготавливают шатуны?
Каждый производитель стремится уменьшить вес деталей КШМ и снизить производственные затраты. Но так как на шатуны в процессе работы двигателя воздействуют высокие нагрузки, уменьшать их массу нежелательно – это может пагубно отразиться на прочности изделий.
При массовом производстве шатуны для бензиновых двигателей изготавливают из специального чугуна методом литься. Это позволяет добиться практически идеального соотношения прочности и стоимости деталей.
В дизельных силовых агрегатах шатуны испытывают более высокие нагрузки, поэтому их производят из легированной стали методом горячей ковки или горячей штамповки. Получаемые детали прочнее, но при этом дороже литых.
В мощных автомобилях и спорткарах используются шатуны из титановых и алюминиевых сплавов. Они в два раза легче стальных и чугунных, что позволяет снизить вес двигателя и увеличить его оборотистость.
Большое значение играет конструкционный материал, из которого изготовлены болты крепления крышки шатунной головки. Их производят из высоколегированной стали, предел текучести которой в 2-3 раза больше, чем у обычной углеродистой.
Почему шатуны выходят из строя?
Основной причиной выхода шатунов из строя является износ деталей. Верхняя головка редко подвергается ремонту, а рабочий ресурс втулки нередко оказывается равен ресурсу самого двигателя.
Нарушение формы или разрушение шатуна может произойти вследствие гидроудара, попадания внутрь двигателя абразивных веществ и посторонних предметов, соударения головки блока и поршня.
Подшипники нижней головки могут выйти из строя вследствие недостаточного смазывания. Определить такую неисправность можно по замятию вкладышей, удлинению шатунных болтов, темно-синему окрасу шатунной головки и потемнению вкладышей.
К поломке шатуна приводит недостаточный уровень масла в двигателе, засорение масляного фильтра, загрязнение цилиндра абразивами и посторонними предметами.
Ремонт шатунов
Шатуны нуждаются в ремонте, если наблюдаются:
-
Деформация стержня
-
Износ зазора в верхней головке цилиндра
-
Износ поверхности и зазора в нижней части головки
Перед началом работ шатун тщательно осматривается, при помощи нутрометра измеряется диаметр детали, зазоры в верхней и нижней части.
Если все показатели в норме, менять шатун не потребуется. При деформации стержня отверстия головок перестают быть параллельными, что приводит к перекосу цилиндра. Об этом свидетельствуют повышенная шумность двигателя при работе на холостом ходу, следы износа на коленвале, головке шатуна, поршне и стенках цилиндра. Еще одним методом проверки шатуна на деформацию является его раскачка на специальной проверочной плите.
После проведения всех необходимых измерений приступают к ремонту.
Чтобы получить нужную геометрию зазора нижнего шатуна, необходимо убрать небольшое количество металла с поверхности крышки головки. После этого крышка ставится назад и фиксируется при помощи болтов.
Расточка отверстия головки по требуемому размеру производится на расточном или универсальном станке. После операции выполняется хонингование.
Если зазор под поршневой палец увеличен, бронзовая втулка под верхнюю головку меняется, и новая деталь принимает нужный размер.
Шатунные вкладыши и юбки поршней рекомендуется дополнительно обработать антифрикционным покрытием.
Шатун двигателя и какие шатуны бывают.
Приветствую всех гостей моего сайта. Многие наверное заметили, что у меня уже есть достаточное количество статей про разные поршни, от простых до керамических. Но внезапно спохватившись, я осознал, что у меня на сайте нет ни одной статьи, про не менее важную и нагруженную деталь любого двигателя внутреннего сгорания — шатун. В ДВС эта деталь испытывает такие же нагрузки как и поршень, и даже больше.
А важность качественного изготовления шатуна, ещё более значима, так как в нём находятся два подшипника, скольжения или качения, а сил, воздействующих на шатун, даже больше чем у поршня. В этой статье я попытаюсь рассказать всё, ну или почти всё о шатуне, рассказать какие они бывают, и т. д. и т. п.Основная задача детали двигателя, называемой шатун, это превращение поступательного движения поршня (вверх-вниз) во вращательное движение коленчатого вала. Верхняя головка шатуна соединена через стальной палец с поршнем, и воспринимает на себя давление газов сгорающей топливо-воздушной смеси. А нижняя головка шатуна передаёт давление газов на кривошипно-шатунный механизм коленвала и заставляет его крутиться. И при этих казалось бы простых движениях, шатун испытывает колосальные ,и в тоже время неравномерные (переменные) нагрузки.
К тому же в начале такта впуска и в конце такта сжатия, шатун тянет на себя и поршень и собственный вес, и всё это на больших оборотах, в итоге силы инерции пытаются его растянуть (разорвать).
Поэтому и требования о качестве изготовления шатуна, очень высоки. Ведь если он хоть немного не выдержит нагрузки и чуть деформируется, то поршневую группу тут же перекосит и начнёт прихватывать, а подшипники в его головках будут работать с перекосом, естественно перекос подшипников будет и при трении на шейках коленвала (и поршневого пальца тоже). В таком случае, ресурс двигателя резко устремится к нулю, к тому же как известно, поршневая и коленвал — это самые дорогие детали двигателя.
Шатун и подшипники его головок двухтактного 50 кубового мотора
Значит ясно, чтобы шатун выдержал вышеперечисленные нагрузки, его необходимо изготовить из прочной и высококачественной стали. А к шатунам и к материалу их изготовления у спортивного двигателя (форсированного, с надувом), требования ещё более жёсткие. При изготовлении, заготовку штампуют, и очень тщательно следят за образованием соответствующего профиля, который придает конструктивную жесткость детали. Так же очень важна полная одинаковость (особенно по весу) изготовления шатунов для многоцилиндровых двигателей, ведь если будет расхождение по массе даже на пару граммов, то повышенная вибрация на высоких оборотах, будет очень ощутима и вредна. Неудобство от вибрации будет ощущаться как водителем, так и самим двигателем, в итоге разрушение коренных подшипников коленвала, может произойти за считанные километры. Поэтому если вам придётся поменять один из нескольких шатунов вашего двигателя, настоятельно советую убедиться в том, что новый шатун весит точно столько же как и остальные шатуны.
Предостережение.
Многие «Кулибины», разобрав свой двигатель и увидев впервые шатуны, удивляются какой же он,, или они шероховатые. Тут же в их светлой голове возникает мысль: а не пригладить ли их наждаком или напильником. Всем настоятельно советую — не нужно, здесь народное творчество неуместно. И объясню почему: ведь при штамповке самым прочным получается верхний (наружный) слой металла, и именно поэтому все шатуны серийных двигателей не обрабатываются снаружи, после штамповки.
Шатуны мотоцикла Урал, вымирающая конструкция из-за плохой смазки подшипников и их малого ресурса. На фото Б — нормальный двутавровый шатун, а на фото В — шатун непрочной формы.
Ещё следует обратить внимание на центральную часть шатуна (стержень), которая имеет двутавровое сечение (исключение составляют шатуны некоторых моделей мотоциклов Урал). Многих «Кулибиных», у которых постоянно чешутся руки, так и подмывает пройтись по граням двутавра с болгаркой. Они обычно мыслят так: мол куда столько лишнего металла и веса, а вот если это дело удалить и этим облегчить шатун, то мотор закрутится веселее. Но ребятки, неужели вы умнее японских инженеров, которые годами только и думают, как заставить крутиться двигатель резвее и выжать из него максимальную мощность. Посмотрите на фото (специально помещённое мной внизу текста) шатунов с японских спортбайков, у которых мощи явно поболее чем у вашего оппозита. Почему то на них двутавровое сечение сохранено. А дело в том, что именно двутавровая форма придаёт шатуну максимальную жёсткость на кручение и на изгиб, особенно при передаче переменных усилий. Жаль что это не понимают многие народные умельцы и инженеры Ирбитского завода, на мотоциклах Урал, как я уже говорил стоят шатуны странной формы (см. фото) Но на некоторых моделях Уралов, стоят нормальные двутавровые шатуны. Наверное Ирбитский завод решил поэкспериментировать. Только вот жаль, что результаты экспериментов отразятся на потребителе. Завод в Киеве по изготовлению мотоциклов Днепр, в этом плане намного умнее, и шатуны их мотоциклов, практически не отличаются от шатунов импортных мотоциклов (см. предпоследнее фото внизу текста).
Правильная доработка шатуна
И всё же шатун можно доработать и облегчить, но делать это нужно правильно, особенно если вы при тюнинге двигателя параллельно облегчаете поршневую. Как известно облегчение деталей уменьшает силы инерционных нагрузок (особенно на больших оборотах). При облегчении деталей главное не переусердствовать, так как правильная технология облегчения веса, позволяет облегчить стержень шатуна всего на 10 — 15 %. Для этого шатун фрезеруют, а не пользуются обычной болгаркой, так как фрезерный станок (особенно с ЧПУ) позволяет снять лишний слой металла абсолютно одинаково с обеих сторон детали. После фрезеровки поверхность шатуна необходимо тщательно отшлифовать и затем отполировать. Полировка поверхности шатуна обязательна, так как после фрезерной обработки поверхности металла, у шатуна не остаётся упрочнённого верхнего слоя, а микронеровности, оставленные фрезой фрезерного станка, становятся концентратором напряжений на поверхности детали и их важно удалить (сгладить). И если эти неровности не убрать, то при очень высоких оборотах, на шатуне в местах микронеровностей появятся трещины, и возможен обрыв шатуна.
Верхняя часть шатуна (головка).
На шатунах разных двигателей как верхняя часть, так и нижняя, может быть разной. Нагрузки при работе мотора, на верхнюю часть приходятся меньшие, чем на нижнюю (подшипник кривошипа), соответственно от этого и диаметр на верхней головке меньше, чем на нижней. А вообще существует три способа соединения поршневого пальца и верхней головки шатуна.
Самый древний способ, это запрессовка поршневого пальца в головку шатуна (а в поршне палец сидит на свободной посадке). И этот способ некоторыми мотоциклистами самодельщиками имеющими Урал, применяется и поныне, когда некоторые из них устанавливают поршни от древних автомобилей (например от классических жигулей). Некоторые преимущества такого сочленения деталей всё же есть, например полное отсутствие люфта между пальцем и шатуном, что позволяет свести диаметр головки к минимуму. От этого немного снижается (совсем чуть чуть) масса и естественно происходит некоторое (опять же чуть чуть) снижение инерционных сил.
И все эти небольшие достоинства снижаются куда более ощутимыми недостатками, а именно: поршневой палец не вращается в отверстии головки, а вращается в алюминиевых бобышках поршня. Это приводит к достаточно быстрому (по сравнению с другими способами соединения) однобокому износу бобышек поршня (получаются овальные, и в двигателе появляется неприятный стук). К тому же при сборке деталей таким способом, нужно иметь небольшие навыки термиста. То есть если не нагреть головку шатуна до 150 — 200 градусов (а палец желательно охладить в морозилке), то деталь не установишь. Так же нужно успеть выставить детали ровно (палец относительно поршня), и если не успеешь, то нагреваемый от соприкосновения с горячей деталью палец намертво обожмётся остывающей головкой, и палец так и останется стоять криво, относительно поршня. Короче нужны определённые навыки.
Второй способ соединения поршневого пальца и верхней головки шатуна, это плавающий палец (палец подвижен в отверстии головки). При таком соединении, в верхнюю головку шатуна запрессовывается бронзовая втулка, и в сопряжении с поршневым пальцем, втулка представляет собой подшипник скольжения, а так же применяют ещё и подшипник качения — роликовый (чаще на двухтактных моторах). В таком способе необходимо ограничить осевое перемещение пальца, и для этого и предназначены стопорные кольца, которые защёлкиваются в проточках бобышек поршня. В таком сопряжении в верхней головке шатуна сверлят отверстие или два отверстия, для лучшего подвода смазки при работе. Ресурс деталей при соединении вторым способом, увеличивается примерно в два раза.
Как я уже говорил, применяют или подшипник скольжения — втулку, или подшипник качения — сепаратор с роликами. В верхней головке шатуна четырёхтактных двигателей, применяют втулку (бронзовую). И при нормальной смазке четырёхтакников, она способна пережить несколько капитальных ремонтов двигателя. В головках шатуна двухтактных двигателей, по крайней мере современных, используют игольчатый (роликовый) подшипник качения, и это естественно, так как условия смазки этого сопряжения, в двухтактных моторах значительно хуже, так как здесь не подаётся чистое масло, а топливно-воздушно-масляная смесь. И замечу, что подшипник качения, не отличается долговечностью в режиме работы тяни-толкай (а шатун имеет именно такой режим работы), и довольно быстро изнашивается и начинает стучать (вспомните новые 12 вольтовые Явы, которые начинали стучать намного раньше, чем их более древние 6 вольтовые модели, в которых устанавливалась бронзовая втулка в головке шатуна).
Время бежит, моторы совершенствовались в повышении мощности, и казалось бы, что в сочленении пальца и головки шатуна уже ничего не придумаешь получше и совершеннее. Но неугомонная инженерная мысль не давала уснуть многим инженерам и изобретателям. Но сначала на спортивных моторах, а затем и на серийных, отказались от втулки в головке шатуна. И вот уже лет 25, как на импортных моторах в шатунах втулки нет вообще. Стальной поршневой палец ходит (плавает) непосредственно в отверстии стального шатуна. И в условиях современной смазочной системы, и качественного синтетического масла, такое сопряжение деталей работает великолепно. Такое сопряжение позволило значительно уменьшить головку шатуна, и свести зазор между пальцем и отверстием головки к минимуму.
Естественно все эти приколы даются не просто так: сам шатун изготовлен из сверхтвёрдой, сверхпрочной и от этого очень износостойкой стали, а палец покрывается специальным износостойким покрытием. Естественно такие шатуны и пальцы значительно дороже обычных.
Нижняя часть шатуна (кривошипная нижняя головка).
Здесь так же различия зависят от тактов мотора. В кривошипно-шатунном механизме двухтактного двигателя устанавливают роликовый подшипник качения. Он по конструкции почти такой же как и в верхней головке шатуна, но естественно значительно мощнее и массивнее. И нижняя головка любого шатуна, испытывает нагрузки намного большие чем поршневая группа двигателя. Кстати на древних моторах (например БМВ и Цюндапп вермахта, К-750, М-72, или мотоциклов Урал) в нижней головке шатуна также устанавливали подшипник качения, и ресурс коленвала таких моторов очень маленький — всего 15 тысяч км.
В современных четырёхтактных двигателях (например у японских или европейских спортбайков, или продвинутых дорожников, и практически во всех автомобильных двигателях) нижняя головка шатуна разъёмная, и с шейкой коленчатого вала контактирует через подшипники скольжения — вкладыши. Основа вкладышей стальная, а сверху нанесён мягкий антифрикционный слой.
Г — шатун Днепра, Д и Е — шатуны зарубежных мотоциклов.
На шатуне с вкладышами имеются специальные шатунные болты, которые обеспечивают жёсткость и точность фиксации частей (половинок) нижней головки шатуна. Эти болты изготавливают из прочной высоколегированной стали и к тому же ещё и подвергаются термообработке (закаливаются и отпускаются). Это важно, так как болт из обычного металла, при работе шатуна вытянулся бы, и отверстие нижней головки шатуна потеряло бы форму идеального круга (стало бы овальным). А в овальном отверстии сразу бы появился стук, и ударные нагрузки быстро бы доканали сопряжение. Так же шатунные болты выполняют функцию точных фиксаторов шатунной крышки относительно самого шатуна, из-за того, что диаметр шатунных болтов выдерживается при изготовлении очень точно (да и сами болты плотно входят в свои отверстия). Гайки шатунных болтов изготавливают из той же прочной стали, что и болты, и имеют особую самоконтрящую их площадку. Но бывают гайки с отверстием для шплинта, который надёжно страхует их от отворачивания. Гайки с отверстиями бывают на некоторых европейских моторах и на нашем хорошо знакомом двигателе мотоцикла Днепр. Кстати, как я уже отмечал, шатуны Днепра, почти такие же как и шатуны импортных мотоциклов (см. фото), только в них стоит всё та же бронзовая втулка, а гайки шатунных болтов стоят вверху, а не внизу.
Хочу отметить, что очень важно чтобы вкладыши прилегали к постелям в шатуне очень плотно и без зазоров, ведь чем плотнее прилегают вкладыши к металлу шатуна, тем интенсивнее отводится тепло от него (тепло отводится через плёнку масла и коленчатый вал). От этого зависит нормальная температура при работе и долговечность подшипника скольжения. И если обнаружите при вскрытии двигателя и замерах, что овальность отверстий превышает 0,05 мм, то такие вкладыши необходимо менять (подробнее о ремонте двигателя можно почитать вот здесь).
Ну и естественно нельзя переворачивать или менять местами крышки нижних головок шатунов. Ведь отверстия под вкладыши обрабатывают на заводе по отдельности на каждом шатуне (обрабатывают пару — шатун с крышкой), в итоге каждый шатун только со своей крышкой имеет идеальный круг. А при замене крышки этот круг естественно нарушается. Чтобы ремонтники не ошибались, на шатуне и его крышке ставят клеймо или метки (если вдруг их не найдёте на деталях, то ставьте свои). Оба клейма (и на крышке и на шатуне) при сборке должны оказаться на одной стороне шатуна и иметь одинаковую маркировку.
И последнее: при ремонте двигателя советую проверять шатуны (особенно отечественные) на прямолинейность и параллельность верхней и нижней головок шатуна, это очень важно для нормальной работы мотора. Как это сделать можно посмотреть в этой статье.
Вот вроде бы и всё самое главное о шатуне, что как я думаю полезно знать каждому ремонтнику и не только ему. У кого возникнут вопросы, пишите. Удачи всем!
Устройство шатуна
Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу. Шатун штампуется из стали.
Для повышения прочности шатуна его подвергают дробеструйной обработке.
Устройство шатуна:
1) верхней головки 1;
2) стержня 3;
3) нижней головки 4 (с крышкой 6).
В верхней головке запрессовывается бронзовая втулка 2 . Во втулке и верхней головке шатуна есть специальные отверстия для подвода масла к изнашиваемой поверхности поршневого пальца. А стержень шатуна выполнен в двутавровом сечении.
Нижняя головка шатуна разъемная. Съемная часть нижней головки шатуна называется крышкой шатуна. Крепится крышка к шатуну с помощью двух болтов с лысками (которые служат для того чтобы болты не проворачивались). Под подшипники скользящего типа 5 (вкладыши) в нижней головке шатуна и крышке в сборе выполняется расточка, в связи с этим крышки шатунов являются невзаимозаменяемыми. Для обеспечения правильной комплектации деталей на них выбиты порядковые номера. На теле и крышке шатуна есть специальные пазы в которые входят выступы на вкладышах. Шатунные и коренные подшипники представляют собой тонкостенные вкладыши с рабочим слоем из свинцовой бронзы. В верхнем вкладыше есть отверстие для подвода масла и специальная канавка по которой масло распределяется. Вкладыши верхних и нижних коренных подшипников не взаимозаменяемы. Для предотвращения смещений и проворачиваний вкладышей, а также осевых смещений выполнены выступы усики. В случае необходимости ремонта блока, коленчатого вала и шатунов создан перечень ремонтных размеров вкладышей.
СОДЕРЖАНИЕ:
1. Запрессовка поршневых пальцев из шатуна
2. Выпрессовка поршневых пальцев из шатуна
3. Ремонт шатуна современного двигателя грузового автомобиля
4. Звуки неисправностей двигателя (стуки двигателя)
5. Признаки и причины неисправностей двигателя автомобиля
6. Как проводится диагностика двигателя автомобиля
Спросите любого механика: какие детали традиционно ремонтируют при капитальном ремонте двигателя? Ответ будет незамедлительным: блок цилиндров и коленчатый вал. Далее многие укажут головку блока цилиндров. И лишь некоторые добавят к этому «комплекту» шатуны. А между тем шатун — деталь не менее ответственная, чем поршень, вкладыш коленчатого вала или направляющая втулка клапана. И никак не второстепенная — дефекты шатунов встречаются в ремонтной практике буквально на каждом шагу. Почему же о них забывают? Предпочитают сразу менять на новые? Или просто не замечают дефектов? А может быть, не все знают, как проверить и отремонтировать шатуны? Иными словами, есть над чем поразмыслить… Некоторые заблуждения и «мифы», связанные с шатунами, довольно живучи. Начнем с основного заблуждения: большинство механиков считают, что шатуны не изнашиваются! Да и чему изнашиваться — поверхности шатуна, к примеру, ВАЗовского двигателя сами не образуют пар трения — в нижней головке шатуна устанавливаются вкладыши, а в верхней неподвижно запрессован поршневой палец. Правда, боковые поверхности нижней головки шатуна трутся о щеки коленвала, но степень износа здесь настолько мала, что ее можно даже не принимать во внимание. Что же получается — установил новые поршни и пальцы, заменил вкладыши в нижней головке — и собирай двигатель? Многие так и делают, собирают, как говорится, не думая. Да и о чем думать, если клиент над душой стоит, торопит? Торопливость — она известно где хороша, но только не в моторном деле. Когда автомобиль с недавно отремонтированным, но уже стучащим, мотором вернется обратно, начинается поиск виновных. А здесь так: или сам водитель виноват — не умеет ездить, или шлифовщик — плохо сделал коленвал. И невдомек иному механику, что это его «работа». Потому что… Шатун тоже изнашивается Возьмите в руки старый шатун с изрядно походившего мотора — на первый взгляд ничего примечательного. Но только на первый взгляд. Вспомним: шатун — один из элементов кривошипно-шатунного механизма, в котором он связывает поступательно движущийся поршень и вращающийся коленчатый вал. Нагрузки на шатун могут достигать десятков тонн, причем являются знакопеременными, т.е. сжатие и растяжение шатуна чередуются в течение одного оборота коленвала. Теперь представим: в таком режиме шатун работает многие годы, сотни тысяч километров. Поэтому не будет ничего удивительного в том, что в металле шатуна будут накапливаться остаточные деформации. Невооруженным глазом их не видно, но стоит воспользоваться соответствующими приборами, как картина прояснится — «потянут» шатун, деформировался. Еще хуже, когда на какой-нибудь …надцатой тысяче автомобиль заедет в глубокую лужу. Гидроудар в цилиндре, сами знаете, дело серьезное (см. № 4/2000), но, допустим, обошлось. Только шатун все равно хоть немного, но деформировался. А потом, много позже, случилось, к примеру, еще одно происшествие: зубчатый ремень оборвался, клапаны погнулись. Головку сняли, все, что надо, заменили, но глубоко в двигатель залезать не стали — не тот, вроде бы, случай. А зря — при ударе поршня по клапанам действие получается равным противодействию. И шатун может еще немного деформироваться. В общем, когда такой двигатель попадает в ремонт, внешний вид шатунов оказывается весьма обманчивым — за мнимым благополучием могут скрываться серьезные дефекты — следы прошлых поломок и нештатных ситуаций в эксплуатации. Выявить их не так просто. Но что вы скажете, если в двигатель при сборке попадает явно дефектный шатун? |
|
Стандартная ситуация — застучал шатунный вкладыш. Многие механики сразу бросаются в бой: ну просто бегут со всех ног шлифовать коленчатый вал в следующий ремонтный размер. Спросите у них, где шатун, который стоял на поврежденной шейке? Больше половины ответят, что он нормальный. А некоторые, особо умелые, вообще себя не утруждают — вынимают, а затем ставят коленвал с новыми вкладышами, даже не разбирая двигателя. Между тем шатун после перегрева, задира, расплавления или проворачивания вкладышей повреждается со стопроцентной вероятностью. Это покажут не только измерительные приборы, но и просто внешний осмотр: нижняя головка будет иметь характерный перегретый вид со следами цветов «побежалости», а ее отверстие станет некруглым, овальным. Не лучше обстоит дело и с верхней головкой шатуна. К примеру, выпрессовали палец, нагрели шатун, установили новый поршень с пальцем. А померил ли кто-нибудь натяг пальца в отверстии головки? Многим некогда, торопятся, у других даже приборов нет проверить. Только когда потом палец вылезет и продерет цилиндр, будет поздно — повторный ремонт, скорее всего, окажется дороже и сложнее первого. |
Точно определить, параллельны ли оси отверстий головок, можно с помощью специальных измерительных приспособлений фирмы Sunnen |
Почему палец может вылезти из отверстия, понятно — натяг слишком мал или его нет совсем. А это вполне возможно, если, например, в прошлом «ремонте» верхняя головка была сильно перегрета перед сборкой шатуна с поршнем (такое бывает при использовании ацетиленокислородной горелки). В конструкциях с плавающим пальцем нередко оказывается изношенной бронзовая втулка верхней головки шатуна. Причем оценить степень износа на ощупь, без измерений, практически невозможно. Особенно обманчивая картина возникает в случае, если палец смазан маслом — люфт пальца не чувствуется даже при большом зазоре во втулке. Таким образом, без соответствующей проверки нельзя определить ни дальнейшую пригодность шатуна к работе, ни объем необходимого ремонта. Поэтому главный вопрос — это… |
Проще всего измерить геометрию отверстия нутромером, но иногда используют и специальные приборы |
Как проверить шатун?
Проверка шатуна обычно проводится в несколько этапов. Начинают чаще всего с проверки геометрии отверстий. Для этого шатун разбирают, моют, а затем собирают с затяжкой болтов (гаек) крепления крышки рабочим моментом. Далее нутромером проверяют диаметр отверстия нижней головки — он должен соответствовать размеру, рекомендованному заводом-изготовителем, а все отклонения формы отверстия (эллипсность) должны укладываться в допуск на размер отверстия (обычно 0,015 мм). Аналогичным образом проверяют и верхнюю головку шатуна. Здесь контролируют отклонения формы (эллипсность не более 0,01 мм), а также величину диаметра отверстия, которая должна обеспечить гарантированный минимальный натяг в прессовом соединении с пальцем (0,02-0,025 мм) или максимальный зазор во втулке (0,015-0,02 мм) «плавающего» пальца. Все эти измерения выполнить несложно, нужно лишь время и аккуратность. Другое дело — проверить деформацию стержня шатуна. |
Для обработки плоскости разъема служит специализированный станок фирмы Sunnen, но с тем же успехом это можно сделать на универсальном оборудовании, если использовать специальную оснастку |
Деформация стержня обычно выражается в том, что оси верхней и нижней головок шатуна оказываются непараллельны. Измерить эту непараллельность наиболее точно можно с помощью специального измерительного прибора или приспособления. К сожалению, пока наличие подобных приборов на СТО или в мастерских скорее исключение, чем правило. Поэтому иногда применяют более простые методы проверки, не требующие дорогостоящей оснастки. | |
Один из возможных альтернативных способов — проверка на поверочной плите. Шатун кладется на плиту, и покачиванием определяется, насколько он деформирован. Разновидность способа — прикладывание к боковой плоскости шатуна лекальной линейки и оценка непараллельности плоскостей верхней и нижней головок. Иногда шатуны проверяют «на скалке» — надевают с малым зазором несколько шатунов верхней головкой на стержень, а деформацию оценивают по просветам между боковыми плоскостями нижних головок шатунов. Но так или иначе, а подобные способы измерения получаются неточными и для некоторых шатунов вообще не годятся (шатуны с разной шириной верхней и нижней головок). Практика тем не менее показывает, что стремиться точно измерить непараллельность осей отверстий головок совсем не обязательно — достаточно и приближенных способов. Объясняется это тем, что параллельность осей нетрудно восстановить с помощью правильно выбранной технологии ремонта. |
Специализированный расточный станок для шатунов — оборудование не из дешевых
|
После того, как шатун проверен, можно приступать к ремонту. Сразу оговоримся — отремонтировать удается шатун с любым из описанных выше дефектов. Правда, при этом требуется оценить эффективность ремонта — с точки зрения надежности двигателя в последующей эксплуатации и экономических соображений. Последнее часто является причиной отказа от ремонта в пользу покупки новых шатунов (для некоторых отечественных двигателей ремонт иногда получается близким к замене по стоимости). Однако приобретенные новые шатуны нередко оказываются хуже по качеству (см. № 10/1999). Это значит, что альтернативы ремонту практически нет. Весь вопрос лишь в том… Как правильно отремонтировать шатун?
То, что шатун — деталь для ремонта серьезная, — свидетельствуют факты: все иностранные фирмы — производители станков для ремонта деталей двигателей имеют в своей программе и станки для ремонта шатунов. Поэтому без хорошего оборудования браться за такое дело бессмысленно — ошибка будет стоить дорого. Стандартным видом ремонта шатунов можно назвать ремонт отверстия нижней головки при небольшом отклонении его размера от исходного (номинального) значения. Суть этой операции сводится к тому, что диаметр отверстия восстанавливается до номинального размера, заданного заводом — изготовителем двигателя. Технология такого ремонта достаточно проста. Вначале крышку шатуна «занижают» (т.е. обрабатывают) по плоскости разъема на небольшую величину — около 0,05-0,1 мм. Это может быть выполнено различными способами, включая шлифование, фрезерование или (при небольшом припуске) притирку. Далее шатун собирается, болты затягиваются рабочим моментом, после чего отверстие обрабатывается в номинальный размер. Для обработки отверстия в рамках этой технологии чаще всего используются горизонтально-хонинговальные станки — они обеспечивают высокую точность (отклонение размеров и формы отверстия в пределах 0,005-0,010 мм) и производительность. Однако применение данной технологии возможно только при малых деформациях или износе отверстия нижней головки. Дело в том, что при хонинговании базирование шатуна на станке выполняется по поверхности самого отверстия. А это значит, что перекос осей головок, если он имел место до ремонта, сохранится и после него. Более того, возможен и дополнительный перекос, если отверстие сильно повреждено, и требуется большой припуск на его обработку. В подобных случаях применяют растачивание отверстий. Этот процесс существенно отличается от предыдущего. Так, нередко приходится «занижать» плоскость разъема не только крышки, но и самого шатуна, иначе около разъема могут остаться необработанные участки поверхности. Кроме того, в процессе растачивания отверстия обеспечивается строгая параллельность осей отверстий головок, поскольку за базу принимается одно из отверстий. |
После грамотного ремонта восстановленный шатун трудно отличить от нового |
Растачивание выполняется на специализированных расточных станках для шатунов, но с помощью специальной оснастки шатун можно расточить и на универсальном станке (к примеру, на токарном). Для получения высокой чистоты обработанной поверхности после растачивания проводится финишная обработка — хонингование. При ремонте нижней головки следует помнить, что межцентровое расстояние между отверстиями головок всегда уменьшается, причем тем больше, чем больше припуск на обработку отверстия. Это может быть критично для дизелей, где укорочение шатуна даже на 0,1 мм заметно уменьшает степень сжатия и негативно влияет на работу данного цилиндра. Выдержать требуемое межцентровое расстояние удается с помощью обработки отверстия верхней головки шатуна. Суть этой технологии в том, чтобы заменить в верхней головке втулку и точно расточить отверстие под палец (втулка всегда имеет припуск в пределах 0,3-0,5 мм), приняв за базу отверстие нижней головки и обеспечив заданное межцентровое расстояние. Точно так же поступают и в случае, когда втулка верхней головки изношена и требуется ее замена. Описанные технологии ремонта обеспечивают высокую надежность работы шатунов и применимы для подавляющего большинства двигателей. Но все-таки из любых правил есть исключения. Поэтому иногда бывает полезно знать… Некоторые «хитрости» в ремонте шатунов Современные высокофорсированные двигатели характеризуются очень высокой нагруженностью деталей, в том числе шатунов. При неисправности системы смазки, когда происходит задир и расплавление вкладышей, нижняя головка шатуна испытывает значительный перегрев, при котором в материале появляются большие остаточные напряжения и деформации. В дальнейшей эксплуатации после ремонта нижняя головка может снова деформироваться, если в процессе ремонта напряжения не будут сняты, к примеру, старением (выдержка при температуре около 200°С). |
Хонингование — основной способ обработки отверстий шатунов, применяется и как финишная операция после растачивания |
Перегрев нижней головки нередко приводит и к перегреву шатунных болтов, прочность которых при этом падает. Для исключения неприятностей (обрыв болта) рекомендуется заменять болты на новые. Для некоторых двигателей (из отечественных стоит упомянуть КамАЗ) при ремонте не требуется обработка плоскости разъема — достаточно расточить отверстие в ремонтный размер под соответствующие ремонтные вкладыши. Напротив, ряд моделей двигателей Opel, Ford, BMW имеют полученный в результате хрупкого излома так называемый «колотый» стык крышки с шатуном, что делает ремонт нижней головки невозможным традиционными методами. Отметим, что на отдельных моделях моторов Volvo, Mazda, Alfa Romeo стык крышки с шатуном выполнен со шлицами. Подобные шатуны также ремонтопригодны, но занижение «шлицевой» поверхности перед ремонтом — весьма трудоемкая операция.
Если в верхней головке шатуна натяг недостаточен для фиксации пальца, единственный способ ремонта—использование пальца с увеличенным диаметром. Таким же способом можно восстановить зазор в отверстии и без замены втулки. В некоторых случаях данное решение оказывается единственным — например, для шатунов с «плавающим» пальцем, не имеющих втулки (некоторые двигатели GM). При этом отверстие предварительно хонингуется для восстановления его геометрии. Справка «АБС-авто» Качественно отремонтировать шатуны, а также блоки цилиндров, головки и коленчатые валы можно, обратившись на фирмы «Механика», тел.: (095) 366-9065, 406-0015, 389-1988, и «Технолуч», тел.: (095) 235-0095. Кроме того, на фирме «Механика» можно приобрести специализированное оборудование для ремонта деталей двигателей.
(Журнал «АБС», ноябрь 2000) |
Как правильно установить поршни и шатуны
Большие и маленькие хитрости при монтаже поршней и шатунов в двигатель
Когда приходит время собирать двигатель, особенно V-образный, правильная взаимная установка поршней и шатунов, а также по отношению к блоку цилиндров и коленчатому валу, может поставить в тупик многих мотористов. Этой статьей мы постараемся им помочь.
Как правильно устанавливать поршни на шатуны?
Если вы собираете V-образной двигатель, то следует иметь в виду: если нижняя головка шатуна имеет с одной стороны более широкую фаску, то она должна быть обращена к галтели (закруглению) шатунной шейки коленчатого вала.
Если же шатуны предназначены для использования с коленчатым валом, без четко выраженных галтелей, то они могут быть и без несимметричных фасок. Тогда ориентация шатуна может определяться по положению «замков» вкладышей: обращенных наружу блока или внутрь (в сторону распредвала – если он находится в развале блока цилиндров).
К примеру, «замки» вкладышей SBC и BBC должны быть обращены наружу. У других вкладышей «замки» могут быть направлены внутрь. На работу собственно вкладышей расположение «замков» не оказывает никакого влияния. Надо лишь правильно ориентировать шатун.
Если же на нижней головке шатуна отсутствуют фаски с обеих сторон, то вкладыш должен быть смещен от галтели шатунной шейки, чтобы его край не попал на закругление.
Сквозные отверстия в верхней и нижней головках шатуна
Часто шатун имеет на нижней головке сквозное отверстие, которое нужно для смазки стенки цилиндра. Эти отверстия предназначены не для смазывания распределительного вала, как полагают некоторые.
Бывает, что отверстие расположено только с одной стороны нижней головки шатуна. Подобные шатуны надо устанавливать так, чтобы отверстие в нижней головке было обращено в сторону распределительного вала (в сторону развала блока цилиндров).
Отверстие в верхней головке шатуна (будь оно сверху или под сбоку – углом) служит для смазки поршневого пальца. Поэтому его ориентация в двигателе роли не играет.
«Замки» шатунных вкладышей
«Замки» (фиксирующие выступы) на вкладышах и соответствующие пазы на нижней головке шатуна и его крышки нужны лишь для правильного позиционирования вкладышей. От «проворота» вкладышей они не спасают, поскольку вкладыши в своей «постели» фиксируются за счет натяга, возникающего при правильной затяжке крепежных болтов крышки нижней головки.
«Правильные» вкладыши, при надлежащем монтаже, слегка выступают за линию разъема нижней головки. Поэтому, после затягивания болтов, они надежно фиксируются в «постели».
В последнее время во многих двигателях используют «беззамковые» вкладыши (примером могут служить двигатели Chrysler 3.7L и 4.7L). За счет устранения операций по механической обработке пазов в шатуне и его крышке, а также «замков» на самих вкладышах снижаются затраты на их изготовление. При монтаже подобных вкладышей их надо ставить строго посередине нижней головки шатуна.
|
Рис. 1 Если в V-образном двигателе на одну шатунную шейку коленчатого вала монтируют два шатуна, то сторона нижней головки шатуна с более узкой фаской должна быть обращена к соседнему шатуну… |
|
Рис. 2 … в этом случае бОльшая фаска на нижней головке шатуна оказывается обращенной в сторону галтели шатунной шейки коленчатого вала. |
|
Рис. 3 Фиксирующий выступ («замок») на вкладыше и соответствующий ему паз в нижней головке шатуна нужны только для того, чтобы правильно установить вкладыши в шатуне. «Замки» никогда не удержат вкладыши от проворачивания в шатуне, если при сборке были допущены какие-либо нарушения. К примеру: болты нижней головки шатуна не затянуты как следует или отверстие в нижней головке потеряло свою форму. |
|
Рис. 4 Вкладыши фиксируются в шатуне только за счет радиального усилия, которое возникает от натяга установленных вкладышей, когда крепежные болты нижней головки затянуты надлежащим моментом. Чтобы получить требуемый натяг вкладыш сделан чуть длиннее своего посадочного места. Поэтому, когда вы «от руки» установите вкладыш в «постель», он будет немного выступать над плоскостью разъема. Так и должно быть – ни в коем случае не надо подпиливать или подрезать края вкладышей! |
Crush Height Each Half Bearing — выступание вкладышей над плоскостью разъема
Bearing — вкладыш
Cap — крышка нижней головки шатуна
Radial Pressure — радиальное усилие
|
Рис. 5 Измерять максимальный диаметр поршня надо в строго определенном месте, поскольку юбка поршня имеет «бочкообразный» профиль и результаты измерений, по высоте поршня, будут существенно различаться. |
|
Рис. 6 Сквозное отверстие на боковой поверхности ВГШ (верхней головки шатуна) (верхнее фото) может указывать на прессовую посадку пальца в шатуне. На втором фото показан тот же самый шатун, но снаружи. А вот отверстие сверху ВГШ (третье фото) служит для улучшения смазки «плавающего» поршневого пальца. |
|
Рис. 7 На днище поршня обычно есть специальные метки (например, изображена стрелка и надпись «FRONT» — как на фото) помогающие правильно сориентировать поршень при сборке двигателя. |
|
Рис. 8 Если поршни предназначены для V-образного двигателя, то обычно с «изнанки» таких поршней ставят метку «L» — если их монтируют в левый ряд цилиндров или «R» — для правого ряда цилиндров. |
Смещение шатуна
Существуют двигатели, у которых стержень шатуна смещен относительно верхней или нижней головок (если смотреть на шатун сбоку – «в профиль»). Подобные шатуны применяют в V-образных двигателях, у которых левый и правый ряды цилиндров стоят «со сдвигом», вперед и назад, относительно друг друга. В зависимости от конкретной модели двигателя, стержень шатуна может иметь смещение 2,5 мм или даже более.
Если есть какие-то сомнения, то при монтаже обратите внимание, что верхняя головка шатуна центрируется по поршню – в бобышках под палец.
Нужно ли в двигателях с вращением против часовой стрелки устанавливать поршни в «обратную» сторону?
На двигателе с обратным вращением – когда коленвал вращается против часовой стрелки, если смотреть с передней части двигателя – шатуны обычно устанавливаются так же, как и в обычном моторе, коленвал которого вращается по часовой стрелке. То есть, бОльшая фаска нижней головки шатуна все равно будет обращена к галтели шатунной шейки.
Однако, если применяются поршни со смещенным поршневым пальцем, то в этом случае поршень должен быть установлен «назад» (развернут на 180 град) относительно его «стандартного» положения. Поршневой палец в подобном поршне смещен к нагруженной стороне юбки поршня.
В двигателе с вращением по часовой стрелке нагруженная сторона цилиндра обращена к впускному коллектору на левом ряду цилиндров («водительской» стороне) и к выпускному коллектору на правом ряду цилиндров («пассажирской» стороне) стороне.
В двигателе с обратным вращением давление на стенку цилиндра от поршня направлено в другую сторону: со стороны выхлопа – слева и со стороны впуска – справа. Если поршни симметричны (т. е. не имеют смещенного пальца), то их ориентация зависит только от цековок под клапанные тарелки на днище – они должны быть сориентированы в соответствии с положением клапанов.
Конструкция юбки поршня
Форма, площадь и масса юбки поршня играют важную роль в потерях на трение и стабилизации поршня при перекладке в верхней и нижней мертвых точках. Здесь мы покажем роль нагруженных и ненагруженных сторон поршня и разработку асимметричных юбок, предназначенных преимущественно для снижения веса.
Левая и правая стороны поршня при работе двигателя нагружены по-разному. Поэтому конструкция юбки поршня играет важную роль в распределении воспринимаемых нагрузок – с точки зрения прочности и веса поршня.
Юбка поршня должна выдерживать давление на стенку цилиндра при одновременном уменьшении трения. А ее площадь должна быть такой, чтобы быть прочной, обеспечивая при этом стабильность поршня, чтобы свести к минимуму «раскачивание» относительно оси пальца, когда поршень движется вверх-вниз. Причем нагруженная поверхность юбки испытывает наибольшую нагрузку на такте расширения.
Если коленчатый вал вращается по часовой стрелке (глядя на двигатель спереди), то нагруженная поверхность юбки поршня обращена к впускному коллектору на левом ряду цилиндров («водительской» стороне) и к выпускному коллектору на правом ряду цилиндров («пассажирской» стороне).
Менее нагруженная сторона юбки воспринимает усилие на такте сжатия. Эта разница в нагрузках обусловлена положением, углом между шатуном и поршнем, при его перемещении.
За весь рабочий цикл разница в нагрузке на разные стороны юбки поршня различается в десять раз! Причем, нагрузка на юбку поршня может варьироваться в зависимости от хода поршня, длины шатуна и максимального давления в цилиндре.
Поэтому асимметричные поршни должны быть специальными – для левого и правого ряда цилиндров. На днище поршня в таком случае наносятся стрелки или иные метки, указывающие на переднюю часть двигателя.
|
Рис. 9 На этом фото показаны асимметричные поршни для левого и правого рядов цилиндров V-образного двигателя. Их особенностью является расширенная часть юбки поршня на нагруженной стороне и зауженная – на стороне с меньшей нагрузкой. |
|
Рис. 10 Другой пример асимметричного поршня. Обратите внимание, как сближены бобышки под поршневой палец, что позволяет сделать поршневой палец короче и легче. Кроме того, хотя это почти невозможно заметить глазом, ось пальца смещена к нагруженной стороне поршня (в сторону более широкой части юбки) на 0,50 мм – для уменьшения дисбаланса из-за разницы в массе «узкой» и «широкой» частей юбки. |
Нагруженная сторона юбки поршня
Когда поршень движется вниз на такте расширения, он испытывает значительное сопротивление, пытаясь провернуть коленчатый вал. С ростом нагрузки увеличивается и сопротивление. При этом нагруженная сторона юбки поршня воспринимает боковое давление, которое увеличивает нагрузку (с ростом трения и износа) на соответствующей стороне стенки цилиндра.
Если на днище поршня имеется какая-либо метка (к примеру точка, или стрелка, или надпись «Front»), важно установить поршень в соответствии с этой меткой, обычно указывающей на переднюю часть двигателя.
Ненагруженная сторона юбки поршня
Эта часть юбки поршня противоположна нагруженной стороне. Она работает, когда поршень движется вверх на такте сжатия, из-за сопротивления, создаваемого сжимаемой топливно-воздушной смесью. Основная ее задача, в том, чтобы обеспечить стабильность поршня при движении в цилиндре. Поэтому эта часть юбки может быть поуже, для экономии веса.
Так что, для точной настройки в распределении этих сил между разными сторонами юбки были разработаны асимметричные поршни, которые имеют более широкую юбку на нагруженной стороне и зауженную юбку с противоположной стороны. Это обеспечивает оптимальное распределение нагрузок на юбку поршня, одновременно снижая массу поршня.
В качестве примера можно привести «асимметричную» (или Т-образную) конструкцию поршней FSR компании JE Pistons, которые имеют расширенную часть юбки на нагруженной стороне, а со стороны бобышек юбка отсутствует вовсе, что позволяет сделать поршневой палец короче и легче. Подобные поршни изначально разрабатывались для гоночных двигателей.
Еще одним преимуществом подобных поршней является улучшение условий работы поршневых колец. Но, в основном, подобная конструкция юбки, в сочетании со слегка смещенным пальцем, позволяет существенно снизить потери на трение.
|
Рис. 11 Из этой схемы видно, как определить нагруженную и ненагруженную стороны юбки поршня.
Thrust Load — действие боковой силы |
Рис. 12 На этом фото хорошо видно, как различается ширина юбки поршня на нагруженной (слева) и ненагруженной (справа) сторонах поршня.
|
Рис. 13 Компьютерное моделирование показывает, как распределяются механические нагрузки в поршне, возникающие при работе двигателя на частичных нагрузках. (Чем темнее цвета – тем меньше нагрузка, а чем ярче – тем больше). |
|
Рис. 14 А на этой схеме видно, как нагружен поршень сразу после воспламенения смеси. |
|
Рис. 15 Здесь поршень показан снизу. На этой схеме хорошо видно, что во время рабочего хода наиболее нагружены верхние части отверстий под поршневой палец (они выделены красным цветом) и элементы юбки поршня, непосредственно примыкающие к ним. |
|
Рис. 16 Тонкий слой антифрикционного покрытия (темного цвета) на юбке поршня помогает удерживать масло и снижает трение между поршнем и цилиндром – особенно при холодном запуске мотора. |
Смещение пальца
Асимметричные поршни также могут иметь смещение поршневого пальца. При этом ось пальца смещена от оси поршня к нагруженной стороне примерно на 0,51 мм. Это небольшое смещение «балансирует» поршень, компенсируя разницу в массе юбки, а также снижая усилие, прикладываемое к нагруженной стороне поршня.
Опять же, ссылаясь на опыт компании JE Pistons, асимметричный поршень позволяет сделать поршневые пальцы короче, жестче и легче (примерно на 10 грамм).
Заключение
Надеемся, эта статья поможет вам лучше ориентироваться в тонкостях сборки двигателя. Помните, что лучше всего пометить поршни и шатуны перед разборкой. Грамотные ответы на ваши вопросы и помощь в технических проблемах с двигателями – наша главная задача.
ХОТИТЕ СТАТЬ АВТОРОМ?
Пришлите свою статью
Обрыв шатуна
Среди автослесарей популярно мнение, что при наличии посторонних звуков от двигателя, рано или поздно автомобиль встанет. Но правила созданы для того, чтобы их нарушать. Это и доказал автомобиль, который приехал на автосервис своим ходом с жалобой от собственника – мотор «троит».
Прежде чем осветить подробности этой истории, следует вспомнить о такой запасной части двигателя как – шатун.
Главная задача шатуна — передать коленчатому валу энергию, образовавшуюся в результате сгорания топливо-воздушной смеси в цилиндре. Выполняя свою работу, шатун подвергается гигантским нагрузкам и поэтому должен выполняться из особенно прочных материалов. Ведь в случае поломки шатуна, автомобиль ждет очень долгий и дорогостоящий ремонт. «Кулак дружбы», так называют обрыв шатуна, при котором одна из его частей пробивает блок цилиндров. Часто поломке шатуна предшествует стук двигателя. Однако в конкретном случае, когда автомобиль приехал своим ходом, расспрашивать про стуки двигателя не пришло в голову даже самым опытным мастерам. Узнав у автолюбителя, что для устранения неисправности он никаких действий не принимал, работа пошла в обычном для таких случаев направлении. Сперва определили проблемный цилиндр, осмотрели и заменили свечу зажигания, следом пришлось заменить высоковольтный провод. Перепробовав все возможные способы и не устранив неисправность, было принято решение разбирать мотор. И, как оказалось, не зря.Оказалось, что поршень второго цилиндра болтается в нем, т.е. двигается вертикально по цилиндру не зависимо от положения коленчатого вала!
В общем, стало понятно, что жесткого соединения с коленчатым валом, которое должен обеспечивать шатун, нет. Автомеханики продолжили разбирать двигатель уже понимая, каков будет результат.
Почему такое могло произойти? Судя по характерным повреждениям шейки коленвала в месте крепления шатуна, которая как будто оплавилась, произошел проворот вкладышей.
Кстати, другие шейки тоже в плачевном состоянии. Наличие задиров — обычно первый признак скорого проворота вкладышей и на них.
Да и сами вкладыши в таком же состоянии. Обычно такое является следствием недостатка моторного масла.
Масляное голодание может возникать по нескольким причинам. Чтобы поступающее масло оставалось в подшипнике и создавался масляный клин, необходимо соответствие зазора между вкладышами и шейками коленвала, предусмотренного производителем. Кроме того, могут быть проблемы с масляным насосом или же перепускным клапаном, которые ведут к слишком низкому давлению в системе смазки.В этом автомобиле причина была немного проще.
Как пояснил автолюбитель, машина приобретена пару месяцев назад. При активном использовании автомобиля проявился стук двигателя. Так как масляный щуп оказался почти сухим, было долито масло. Стучать стало тише, а раз так, то владелец продолжал эксплуатацию, пока один цилиндр не отключился полностью. Этот случай, пожалуй, можно назвать большой удачей, т.к. обычно такие ситуации ведут или к замене блока цилиндров, или мотора целиком.
Понравилась статья?
Съемники шатунов и кареток велосипеда
Иногда, чтобы починить в велосипеде какой-либо важный узел или произвести замену детали, приходится этот узел вообще разобрать. И обычного инструмента, как например, разводной или универсальный ключ, недостаточно в этом случае. Нужны специальные приспособления – съемники для велосипеда.
Зачем нужен съемник шатунов и каретки?
Такое приспособление, как съемник шатунов велосипеда, может понадобиться в случае необходимости замены шатунов (например, при повреждении или поломке этих деталей). Шатуны – одна из тех деталей велосипеда, на которую приходится немалая нагрузка. И чего только не придумает производитель, чтобы уменьшить вес этого узла, но вместе с тем, сохранить его прочность. В некоторых велосипедах блок передних звезд представляет собой неразборную конструкцию (чаще всего это велосипеды из недорогой ценовой категории). В других, наоборот, передние звезды можно отделить от правого шатуна и поменять по мере износа зубьев.
В велосипеде подшипниковый узел, который соединяет шатуны с рамой, называется кареткой велосипеда. Располагается каретка в нижней части велосипеда, соответственно, этот узел сильно подвергается внешнему влиянию (туда попадает пыль, грязь, влага). Такой инструмент, как съемник каретки велосипеда необходим в процессе обслуживания подшипникового узла (чистки, смазки или замены каретки).
Съемники для кассеты велосипеда и трещетки
В случае износа задних звездочек на велосипеде, необходимости замены спиц с правой стороны, регулировки конуса или необходимости смазать внутренности втулки, велосипедисту может понадобится снять трещетку или кассету. И соответственно, для каждой процедуры есть свой инструмент – съемник кассеты велосипеда или съемник трещетки.
Ищете, где купить щетки для велосипеда, нужен съемник педалей, или съемник шатунов велосипеда? Цена на весь велоинструмент, который представлен в каталоге интернет-магазина Deluxe Sport, доступна, а качество – всегда на должном уровне. Мы работаем для того, чтобы каждый клиент был удовлетворен покупкой на все 100%.
Поршни и шатуны двигателя
Поршень выполняет роль подвижной заглушки в цилиндре, образуя нижнюю часть камеры сгорания. Между поршнем и стенкой цилиндра имеется газонепроницаемое уплотнение, поэтому единственный способ расширения горячих газов сгорания — это прижать поршень вниз. То же самое и с пушечным ядром, но вместо того, чтобы улететь на чей-то любимый пиратский корабль, вращающийся коленчатый вал толкает поршень вверх по цилиндру, и цикл повторяется.
Более 60% трения внутри двигателя происходит за счет движения поршневого узла, и поэтому это одна из основных областей повышения эффективности двигателей. Поршень все еще находится в стадии разработки и исследований, о чем мы вскоре поговорим более подробно.
Огромные силы создаются при изменении направления поршня при его движении вверх и вниз. Более легкий поршневой узел имеет меньший импульс, таким образом прикладывая меньшее усилие и позволяя двигателям с более высокими оборотами. Это означает, что происходит постоянный толчок для уменьшения веса шатуна и поршня.
Поршень соединен с коленчатым валом через шатун , часто сокращается до стержень или же шатун . Эти части вместе известны как поршень в сборе . Оба конца шатуна могут поворачиваться: часть шатуна, которая соединяется с поршнем, называется малый конец , а конец, который крепится вокруг коленчатого вала, называется большой конец . Большой конец будет иметь вкладыши подшипники которые минимизируют трение и поддерживают точный масляный зазор с шейкой штока на коленчатом валу.Шатун разделен на две части — с крышка стержня используется для зажима вокруг подшипника шатуна и коленчатого вала.
Компоненты поршневого узла
Поршень
Вся мощность в двигателе достигается за счет силы, воздействующей на верхнюю часть поршня. Эта сила определяется как площадь поршня, умноженная на давление газа. Более крупные поршни и более высокое давление газа обеспечат большую мощность. В целом размер поршня ограничен конструкцией двигателя, но поршень действительно играет жизненно важную роль в поддержании высокого давления газа, создавая газонепроницаемое уплотнение со стенкой цилиндра.
Верхняя поверхность поршня называется кроны (также голова или же купол ). В серийных двигателях корона бывает различной формы, но обычно она бывает плоской, выпуклой или выпуклой.
[Различные формы коронки]
Практически все современные поршни включают предохранительные клапаны которые обеспечивают зазор вокруг клапанов в верхней части хода поршня.
Заводная головка, находящаяся в непосредственном контакте с горячими дымовыми газами, сильно нагревается.Именно эта область расширяется больше всего, поэтому будет небольшой конус внутрь от нижней части поршня, чтобы обеспечить больший зазор вокруг этой верхней площадки между головкой и верхним поршневым кольцом.
Хотя нам требуется газонепроницаемое уплотнение, нам также необходимо, чтобы поршень плавно перемещался по цилиндру с минимальным трением, поэтому поршню необходимо некоторое клиренс . У обычного поршня зазор между ним и стенкой цилиндра составляет 0,1 мм (0,004 дюйма) — это примерно ширина человеческого волоса.Чтобы сохранить этот зазор, поршень должен быть точно обработан, а сплав, из которого он сделан, будет точно определен с учетом теплового расширения.
Небольшой зазор между поршнем и стенкой цилиндра перекрывается кольца поршневые , которые входят в канавки на поршне в области, известной как ремень поршневой . Пространства между этими канавками называются кольцо приземляется .
Поршень прикреплен к шатуну с помощью короткой полой трубки, называемой штифт на запястье , или же палец поршневой .Эта булавка для запястья несет полную силу сгорания.
На поршень при сгорании действуют не только вертикальные силы, но и боковые силы, вызванные постоянно изменяющимся углом шатуна. Из-за этих боковых сил поршню требуются гладкие поверхности, чтобы он мог прилегать к стенке цилиндра и удерживать поршень в вертикальном положении. Боковые поверхности поршня известны как Юбка поршня .
[Пышная юбка и юбка-тапочка]
Есть два типа юбок.Самый простой — это пышная юбка или сплошная юбка, представляющая собой классический поршень трубчатой формы. Эта конструкция до сих пор используется на грузовиках и больших коммерческих двигателях, но уже давно заменена на легковые автомобили и мотоциклы более легкой конструкцией, известной как тапочек поршневой .
У скользящего поршня часть юбки срезана, остались только поверхности, которые опираются на переднюю и заднюю часть стенки цилиндра. Такое удаление сводит к минимуму вес и уменьшает площадь контакта между поршнем и стенкой цилиндра, тем самым уменьшая трение.
Современные производственные двигатели дополнительно уменьшают трение между поршнем и стенкой цилиндра за счет использования Покрытия поршней с низким коэффициентом трения , как тефлон в сковороде с антипригарным покрытием. Эти покрытия обычно наносятся методом трафаретной печати в виде заплатки на юбки поршней — например, на изображенном на рисунке покрытии на основе графита двигателя Ford Fiesta Ecoboost.
[Поршень Ford]
Когда поршень опускается на такте сгорания, он будет оказывать боковое усилие в направлении, противоположном наклонному шатуну.Направление цилиндра, на которое действует эта сила, известно как сторона осевого напора, и поршень и стенка цилиндра будут подвергаться большему износу в этой области.
[Схема тяги]
Поршень становится невероятно горячим, и ему необходимо эффективно отводить это тепло. Тепло от поршня идет в три места: в виде лучистого тепла в камеру сгорания, в стенки цилиндра через поршневые кольца и вниз по шатуну. Кроме того, во многих двигателях поршень охлаждается с помощью масла, распыляемого на нижнюю часть.
Поршневые кольца
Поршневые кольца плотно прилегают к поршню, перекрывая небольшой зазор между поршнем и стенкой цилиндра. Обычно на поршне имеется три поршневых кольца, выполняющих разные функции.
Компрессионные кольца
Два верхних кольца называются кольца компрессионные (также известен как кольца нажимные или же газовые кольца ) и их основная роль заключается в предотвращении проникновения газов через небольшой зазор между поршнем и стенкой цилиндра.Этот проход газа через поршень в картер известен как минет и должны быть минимизированы для сохранения сжатия.
Компрессионные кольца обычно изготавливаются из твердого чугуна и оказывают внешнее давление на стенку цилиндра. Это внешнее давление возникает из-за естественной упругости колец, но дополняется во время такта сгорания давлением газа за кольцами, которое более плотно прижимает их к стенке цилиндра.
[Давление газа за компрессионными кольцами]
Важно отметить, что компрессионные кольца не оказывают бокового давления на поршень и не действуют для него как направляющие.Канавка в поршне будет глубже, чем ширина поршневого кольца, что позволит кольцу скользить по масляной пленке.
Компрессионные кольца также передают тепло от поршня к стенке цилиндра, где оно рассеивается в охлаждающей жидкости, протекающей через водяные рубашки.
Эти кольца сломаны с небольшим зазором, который позволяет устанавливать и снимать их поверх поршня. Ширина этого зазор поршневого кольца указывается производителем, и его можно измерить, поместив кольцо внутрь цилиндра и измерив зазор с помощью щупа.На этом рисунке зазоры сильно преувеличены, на самом деле они будут очень тонкими — 0,2 мм или меньше.
Кольца контроля масла
Кольцо нижнее на поршне Кольцо масляное . Масло постоянно разбрызгивается на стенки цилиндров либо из отверстий в шатунах, либо из форсунок, установленных в картере. Для минимального трения нам нужна тонкая масляная пленка, а функция маслосъемного кольца заключается в том, чтобы удалить излишки масла и оставить идеальную масляную пленку для скольжения компрессионных колец и юбки поршня.
Нам определенно не нужно масло в камере сгорания: присутствие масла может вызвать плохое сгорание, высокие выбросы, чрезмерное накопление углерода на клапанах и поршнях и синий дым — все это плохие новости для плавного двигателя.
Маслосъемное кольцо обычно состоит из двух тонких хромированных скребковых колец с проставкой, зажатой между ними для удаления масла. Он разработан, чтобы скользить по маслу при движении вверх и соскребать его при движении вниз. Это называется сегментированным дизайном.В канавке для контроля масла будут просверлены отверстия, чтобы излишки масла могли легко стекать обратно в картер.
Установка новых поршневых колец
Область стенки цилиндра над верхним компрессионным кольцом не охвачена кольцами, что снижает износ. Это может вызвать образование гребня в течение всего срока службы двигателя. Если новые кольца устанавливаются на цилиндр, который не подвергался повторной расточке, тогда может потребоваться кольцо с удаленной выемкой, известное как гребневик, чтобы гарантировать, что новое кольцо не соприкасается с этим гребнем материала.
[Схема смещения колец]
При установке новых колец зазоры должны быть смещены и никогда не должны находиться прямо на одной линии друг с другом, чтобы предотвратить прямой путь выхода газов.
Булавка на запястье
Поршень прикреплен к шатуну через полую трубку из закаленной стали, известную как штифт на запястье или же палец поршневой . Этот штифт проходит через маленький конец шатуна и позволяет ему поворачиваться на поршне.
Есть два метода закрепления булавки на запястье. А полуплавающий В конструкции штифт закреплен в шатуне, при этом он может свободно вращаться в отверстиях поршня. А полностью плавающий штифт запястья будет свободно вращаться как в малом конце, так и в поршне, и будет зафиксирован на месте с помощью стопорных колец или тефлоновых кнопок на концах штифта. Для полностью плавающей булавки на запястье будет заменяемая втулка внутри малого торцевого отверстия.
Штифт кисти может быть немного смещен в сторону, а не точно по центру поршня.Это известно как штифт смещенный и используется для уменьшения поперечного перемещения поршня внутри цилиндра. Избыточное движение из стороны в сторону известно как удар поршня из-за стука, который он производит.
Шатун
шатун передает силу от поршня к коленчатому валу, он постоянно подвергается растягивающим, сжимающим и изгибающим силам, поскольку он действует как посредник в этих двухтактных отношениях.Шатун должен быть конструктивно прочным, и неслучайно он принимает форму миниатюрной стальной двутавровой балки, похожей на своих более крупных собратьев, поддерживающих небоскребы и мосты. Профиль двутавровой балки обеспечивает максимальную прочность конструкции при минимальной стоимости веса, и, как и поршень, мы хотим сохранить как можно меньший вес шатуна.
Требуемая прочность шатуна означает, что он изготовлен из кованой стали или порошковой стали. У экзотических двигателей могут быть титановые стержни.Чугун не используется из-за его веса.
Верхняя часть шатуна, прикрепленная к поршню, называется малый . Он не всегда будет иметь ориентиры. От малого конца стержень проходит по профилю двутавровой балки до самого конца. большой конец который разделен на две части, чтобы он мог плотно прилегать к шейке коленчатого вала. Нижняя часть стержня называется крышка стержня и он будет прикреплен шпильками или болтами к самому стержню.
Стержень в настоящее время обычно изготавливается как одно целое, а затем крышка стержня надрезается и отламывается. Это оставляет неровную поверхность сопрягаемой поверхности, но придает большую прочность. Важно, чтобы крышки шатунов не смешивались с другими шатунами — они принадлежат друг другу как единое целое.
Шатунная головка будет иметь вкладыши подшипника в двух половинах, эти вкладыши подшипника будут изготовлены из того же материала, что и вкладыши для основных цапф. Подшипники шатуна смазываются маслом, поступающим под давлением через каналы в коленчатом валу.
Во многих шатунах просверлено отверстие от большого конца вверх, через вал, до выпускного отверстия где-нибудь по их длине. Этот канал позволяет маслу проходить вверх по шатуну от большого конца и распыляться на упорную область стенки цилиндра, где трение является максимальным.
Неисправности
Поршневой удар
Износ стенки цилиндра или юбки поршня может привести к слишком большим зазорам между поршнем и стенкой цилиндра.Это допускает чрезмерное перемещение поршня из стороны в сторону. Когда поршень меняет направление вверху и внизу своего хода, это может привести к его ударам о стенку цилиндра, вызывая шум, известный как поршневой удар .
Поршень обычно усиливается, когда двигатель холодный, прежде чем поршень успеет прогреться и расшириться. Его можно вылечить путем механической обработки цилиндра и использования поршня увеличенного размера.
Модификации и апгрейды
Модернизированные поршни и шатуны
Установка набора более прочных и легких штоков и поршней позволит создать более мощный двигатель.Это может быть необходимо для наддува или наддува двигателя. Переход от кованых стержней к титановой или порошковой (спеченной) стали приведет к более мощному двигателю.
Покрытия поршней
Как обсуждалось выше, недавно разработанные двигатели часто имеют покрытие с низким коэффициентом трения, нанесенное на заводе на их поршни. Но эти покрытия также доступны на вторичном рынке для уменьшения трения и увеличения (или уменьшения) теплопередачи.
[Примеры покрытий]
- На юбку нанесено покрытие для уменьшения трения между ней и стенкой цилиндра.
- Керамическое покрытие может быть нанесено на головку и предназначено для отражения тепла обратно в камеру сгорания и уменьшения количества, передаваемого поршню.
- Нижняя сторона поршня может иметь нескользящее покрытие, известное как масляное покрытие который отталкивает масло, тем самым уменьшая вес узла и обеспечивая более эффективное охлаждение масла.
Технология шатуна: кованые и стальные стержни
Возможно, ни одна часть двигателя не подвергается такому стрессу, как шатуны.Разработанные для передачи линейного движения и энергии, производимой в камере сгорания, во вращательное движение коленчатого вала, шатуны также служат ключевым компонентом в управлении теми же событиями и изменяют долговечность и срок службы двигателя.
«Комплект стержней должен быть адаптирован к двигателю и потребностям клиента», — говорит Керри Новак из Crower.
Комплект стержней должен быть адаптирован к двигателю и потребностям клиента. -Керри Новак, Crower
Несмотря на то, что для изготовления шатунов используются разные материалы, это обсуждение будет сосредоточено на стали, особенно на заготовке и кованой стали 4340.За советом экспертов мы связались с некоторыми из ведущих представителей удилищной индустрии, включая Новака из Крауэра, Дэвида Лича из Lunati, Алана Дэвиса из Eagle Specialty Products и Майкла Токарчика из Manley. Мы также обратились к Брайану Нилену из Late Model Engines за дополнительной информацией.
Понимание напряжений в стержнях
Шатуны подвергаются как сжимающим, так и растягивающим усилиям в течение 720 градусов четырехтактного цикла сгорания. На такте сжатия давление внутри цилиндра увеличивается, давя на шток.В зависимости от степени сжатия вашего двигателя, сумматоров мощности и т. Д. Это давление может расти быстро и круто.
Степень сжатия, давление наддува, угол опережения зажигания, перекрытие распределительных валов, мощность, крутящий момент, частота вращения двигателя и многие другие факторы влияют на нагрузку на шатуны.
На стороне сгорания стержень должен выдерживать резкое и резкое изменение направления в дополнение к давлению, создаваемому горящими и расширяющимися газами сгорания. Эту нагрузку на шток можно рассчитать, умножив площадь отверстия (квадрат радиуса отверстия, умноженный на пи) на давление в цилиндре.Например, отверстие диаметром 4 дюйма будет иметь площадь поверхности 12,566 дюйма. При давлении в камере 1000 фунтов на квадратный дюйм совокупное давление на стержень в этой точке сгорания будет 12566 фунтов на квадратный дюйм. И не забывайте, что свеча сработает незадолго до того, как поршень достигнет верхней мертвой точки, что означает, что шток все еще находится на подъеме, поскольку горючая смесь воспламеняется, что еще больше увеличивает давление в цилиндре, которое шток должен преодолевать.
Эта точка цикла сгорания также поднимает проблему преждевременного зажигания, детонации и пропусков зажигания.Зная, что давление в цилиндре увеличивается после воспламенения топливовоздушной смеси, предварительное зажигание увеличивает нагрузку на шток раньше, дополнительно нагружая его сжимающей силой. Если событие предварительного воспламенения является сильным или достаточно частым, стержень может быть нагружен сверх его предела.
Двутавровая балка и двутавровая балка
Стержни с двутавровыми балкамибыли созданы из-за необходимости во время Второй мировой войны, когда произошли отказы стержней в самолетах-истребителях, когда летчики-истребители союзников использовали закись азота для увеличения скорости отрыва во время собачьих боев.
Есть постоянные споры о том, что лучше, двутавровая балка или двутавровая штанга. Стержни двутавровых балок обычно более жесткие и могут лучше распределять нагрузки и сжимающие силы, приложенные к ним. Они могут быть идеальными для низкооборотных двигателей с сумматорами мощности. У этой улучшенной силы есть компромиссы. Стержни двутавровой балки могут быть тяжелее, иногда на 100 граммов больше, чем сопоставимая двутавровая балка, и требуют большего зазора, что следует учитывать при использовании кривошипов толкателя и кулачков большого диаметра. Они также требуют дополнительной обработки в процессе производства, что увеличивает их расходы.
Стержни двутавровой балкимогут снизить вес и обеспечить дополнительный зазор при небольшом снижении прочности. Эта потеря прочности минимальна в стержнях двутавровой балки высокого класса, если используемые материалы такие же, как у сопоставимой двутавровой балки. В конструкцию можно добавить дополнительный материал для дальнейшего усиления двутавровой балки, но в некоторых случаях это может приблизить общий вес к аналогичной двутавровой балке. Двутавровые балки обычно предпочтительны для приложений с более высокими оборотами.
Учитывая напряжение этих событий, можно было предположить, что такт выпуска будет легче всего на шатуне.Цель состоит в том, чтобы просто переместить поршень, чтобы протолкнуть отработанные газы через открытый выпускной клапан. Это, по сути, самое опасное время во всем процессе сгорания для шатуна. Как объясняет Майкл Токарчик из Manley: «Причина, по которой в этом цикле не происходит буферизации давления в цилиндре». Во многих распределительных валах, имеющих хотя бы некоторые типы перекрытия впускных и выпускных клапанов, отсутствует демпфирующее давление, замедляющее поршень.
Когда кривошип снова совершает поворот через верхнюю мертвую точку, инерционные силы продолжают приводить поршень в движение вверх.Это конец такта выпуска и начало такта впуска. В этот момент стержень подвергается растягивающему напряжению. Большой конец должен совпадать с кривошипом и начинать движение обратно в противоположном направлении, в то время как меньший конец должен оставаться с поршнем и продолжать движение вверх. По словам Токарчика, именно здесь Мэнли видит больше всего отказов в шатунах.
Во время всех этих изменений направления оба конца штока подвергаются напряжению, что в конечном итоге может привести к овальному отверстию подшипников или полному выходу из строя.
Производственный процесс
Сегодня для изготовления высокопроизводительных шатунов используются два производственных процесса: ковка и заготовка. Оба процесса имеют уникальные плюсы и минусы, и оба позволяют получить очень прочный готовый продукт при использовании качественных производственных процессов и материалов.
Ковка
Ковка — это производственный процесс, в котором используются штампы инструментов, воздействие высоких температур и давления. Матрица по сути является негативом стержня, похожим на пресс-форму.Заготовку из металла нагревают до температуры, при которой она становится ковкой, а затем вдавливают в матрицу с помощью высокого давления, что часто называют ударом молотка. Металл принимает форму необработанного шатуна, который затем поступает на окончательную обработку. Это включает в себя обрезку и калибровку стержня для торцевой крышки, сверление отверстий для болтов стержня и запрессовку втулок. Стержни также могут быть сняты напряжения, подвергнуты термообработке и точно настроены на нужный вес.
Слева: необработанная поковка от Eagle Specialty Products перед окончательной обработкой.Справа: Готовый кованый стержень с двутавровой балкой Eagle, готовый к отправке.
Выравнивание зерен является ключевым фактором прочности кованых стержней. «Процесс горячей штамповки также сжимает и правильно выравнивает зернистую структуру металла для повышения прочности», — поясняет Lunati’s Leach.
«Кованая деталь прессуется таким образом, чтобы волокна металла были выровнены, чтобы лучше выдерживать нагрузки, которым они подвергаются», — повторяет Дэвис из Eagle, добавляя, что шерсть вокруг большого конца стержень дополнительно увеличивает его общую прочность.
Пожалуй, самым большим недостатком кованых стержней является их первоначальная стоимость производства. Производство штампов может стоить десятки тысяч долларов, причем для каждой конструкции требуется специальный штамп. Эти матрицы со временем изнашиваются и подлежат замене. Для внесения изменений в конструкцию требуется либо новая матрица, либо изменение процесса окончательной обработки. Хотя ковка обеспечивает повышенную прочность, она также лучше всего подходит для крупносерийного производства, чтобы компания могла получить рентабельную окупаемость инвестиций.
Заготовка
Шатуны для заготовок изготовлены из цельного куска плоской кованой стали.Они проектируются с использованием компьютерной программы типа CAD, а затем индивидуально вырезаются из материала заготовки с помощью водяной струи или другого станка с ЧПУ.
«Вы можете изготовить шатун для конкретного применения, то есть шатуны могут быть адаптированы к конкретным потребностям каждого двигателя», — говорит Новак. Благодаря такой гибкости, небо буквально является пределом того, что можно спроектировать и произвести.
Слева: бланк стержня Crower Billet. Справа: Готовый стержень двутавровой балки Crower.
Поскольку процесс изготовления стержней-заготовок не зависит от переоборудования инструмента или новых штампов, конструкции можно легко изменить, чтобы учесть изменения в требованиях к прочности, весу, длине стержня, диаметру кривошипа и пальца, смазке и т. Д.
«Мы можем взять удочку из нашей конструкции Maxi-Light, которая может выдерживать 450 лошадиных сил, и, используя эту базовую удочку в качестве чертежа, спроектировать удочку, которая может иметь такие же размеры, специально адаптированные для приложений, которые вырабатывают более 2000 лошадиных сил», — говорит Новак.
Гибкость производства штанг для заготовок позволяет производить все, от штанги для мотоциклов до высокопроизводительных двигателей V8 и даже высокопроизводительных дизелей для больших буровых установок.
Такие быстрые производственные возможности позволяют производителям стержней для заготовок изготавливать стержни для снегохода или мотоцикла вплоть до дизельного двигателя большой установки на том же оборудовании.
Обратной стороной заготовки по сравнению с поковкой является зернистая структура прутка. Поскольку стержень для заготовки вырезается из плоской стали, зерно не закручивается и не течет вокруг большого конца стержня, как в кованых изделиях. При использовании стержня для заготовки зерно остается прямым или вертикальным по всей длине стержня.
Поскольку прутковые заготовки часто производятся небольшими партиями или в нестандартных конфигурациях, может потребоваться больше времени на создание дизайна, настройку станка и окончательную чистовую обработку. Из-за дополнительных трудозатрат и меньшего производственного цикла заготовки стержней могут быть дороже, чем кованые стержни из того же материала.
Материалы
Прочность прутка в кованой или заготовке во многом определяется используемыми материалами. Когда дело доходит до дрэг-рейсинга и уличных гонок, производители двигателей сделали сталь предпочтительным материалом для большинства применений.
Почему сталь
Не вся легированная сталь 4340 одинакова. Поэтому очень важно знать сталелитейный завод, точный сплав материала и иметь дело только с самыми уважаемыми поставщиками металла. -Дэвид Лич, Лунати
Раньше в двигателях с высокими оборотами использовался алюминий или другие экзотические материалы для придания стержням высокой прочности и легкого веса.Однако по мере роста затрат и изменения конструкции двигателей строители вернулись к производству стали.
Брайан Нилен из Late Model Engines (LME) объясняет: «Вес под булавкой на запястье не так важен, как вес над ней». Это лишь одна из причин, по которой многие гонщики и производители двигателей возвращаются к стали. Стоимость, долговечность и долговечность — вот некоторые из других.
Еще один важный фактор — клиренс. В высокоскоростных гоночных двигателях, таких как Pro Stock, стабильность клапанного механизма становится все более важной.Правила Pro Stock допускают больший диаметр распредвала, а кулачки с большим отверстием обеспечивают более высокий подъем клапана в дополнение к повышению жесткости и устойчивости клапанного механизма. Дополнительный материал, необходимый для алюминиевых стержней, часто влияет на зазоры между стержнем и распределительным валом. Благодаря использованию высокопрочного стального стержня можно без помех использовать большие отверстия для кулачков.
Использование высококачественной стали 4340 обязательно для обеспечения максимально прочного шатуна.
Наиболее распространенным типом стали, используемой для высокопроизводительных шатунов, является хромомолибденовая сталь 4340.4340 имеет предел прочности на разрыв 145 000 фунтов на квадратный дюйм. Его твердость, пластичность и другие свойства будут варьироваться в зависимости от применяемой термической обработки. 4340 также может называться сталью авиационного или авиационного качества.
Весь процесс производства стали также определяет прочность этих материалов. Простое обозначение стали 4340 не обязательно означает, что два поставщика стали производят конечный продукт в соответствии с одними и теми же стандартами или с использованием одинаковых процессов.
«Не вся легированная сталь 4340 одинакова», — говорит Лич.«Поэтому очень важно знать сталелитейный завод, точный сплав материала и иметь дело только с самыми уважаемыми поставщиками металла».
Качественные болты шатуна также имеют решающее значение для прочности шатуна.
Термическая обработка, волочение, твердость, пластичность и структура зерна — все это играет жизненно важную роль в качестве стали, тем самым влияя на конечные характеристики шатуна.
Болты тяги
Все производители стержней подчеркивают важность болтов для стержней.Ни один другой крепеж в автомобиле не подвергается такому напряжению, как болт тяги.
«Назначение болта штока — сохранить круглое отверстие и поддерживать надлежащую предварительную нагрузку на стыке корпуса и крышки — в верхней мертвой точке во время такта выпуска», — говорит Токарчик из Мэнли.
Это момент, когда стержневой болт подвергается наибольшей нагрузке и часто случаются отказы стержневого болта. Как объяснялось ранее, такт сгорания создает нагрузку на болты штока, но инерционные события, происходящие в верхней мертвой точке во время такта выпуска, могут привести к большим потерям.
Строители должны следовать инструкциям производителя стержневых болтов при установке.
«Существует множество изобретений для стержневых болтов, а некоторые производители двигателей даже разработали свои собственные. Дело в том, что вы должны придерживаться того, что рекомендует производитель стержневого болта для смазки и процедуры затяжки, и не отклоняться от этого », — говорит Дэвис.
Выбор стержня
Выбор подходящего шатуна для вашего применения так же важен, как и выбор правильного распределительного вала.Это также связано с процессом, в котором вы должны знать несколько вещей о своей комбинации, прежде чем принимать решение. Проконсультируйтесь с изготовителем двигателя и его производителем.
«Когда мы проектируем кованую деталь, мы хотим сделать ее достаточно прочной, чтобы выдержать то, что, как мы ожидаем, будут использовать наши клиенты. Он также должен быть достаточно легким, чтобы работать в нужном диапазоне оборотов », — говорит Дэвис.
Есть несколько факторов, которые, по мнению опрошенных, следует учитывать при выборе штанг.Помимо основных характеристик двигателя, таких как ход и рабочий объем, вам также необходимо знать следующее:
В конце концов, если ваши компоненты не соответствуют тем уровням мощности, которые они видят, не имеет значения, кто ваш производитель двигателей. -Брайан Нилен, LME
- Масса поршневого пакета (поршень с кольцами)
- Рабочие об / мин
- Мощность
- Момент
- Тип блока
- Материал кривошипа
- Степень сжатия
- Голов
- Характеристики кулачка
- Масса автомобиля
- Передаточное число
Выбор стержня в конечном итоге сводится к тому, чтобы полагаться на производителя и производителя двигателя, которые предоставят надлежащий комплект для конкретного применения двигателя.Нилен говорит нам: «В конце концов, если ваши компоненты не соответствуют тем уровням мощности, которые они видят, не имеет значения, кто ваш производитель двигателей». Выбор подходящего шатуна для двигателя поможет обеспечить наилучшие результаты в день гонки, а также продлит срок службы этого двигателя.
Физика шатуна — NASA Speed News Magazine
Безусловно, один из наиболее важных компонентов двигателя является одним из наиболее нагруженных.Шатуны берут энергию от процесса сгорания и преобразуют ее во вращение коленчатого вала, что, конечно же, и заставляет вещи работать.
Чем больше мощности вы хотите добиться, тем больше оборотов в минуту вам нужно, тем сильнее нагружаются стержни, и это не однозначно. Стержни подвергаются напряжениям растяжения, сжатия и изгиба, и их устойчивость ко всем трем условиям зависит от конструкции, материалов и производства.
«При растяжении, сжатии и небольшом изгибе возникает большая сила, поэтому мы обращаем внимание именно на это, — сказал Клейтон Стотерс, главный инженер Wiseco.«Инерционный корпус также довольно тяжело воздействует на шатуны, потому что 10 000 об / мин — это большая нагрузка, поэтому мы внимательно следим за растягивающей нагрузкой.
Когда поршень поднимается в верхнюю мертвую точку и коленчатый вал начинает вторую половину своего вращения, вытягивая большой конец штока, два конца штока по существу отрываются друг от друга. Это растягивающая нагрузка, и она также возникает, когда вы отпускаете газ и замедляете движение. Это создает нагрузку на крышку стержня и болты стержня, которые также передают свою нагрузку на большой конец стержня.
Сжимающая нагрузка возникает, когда поршень передает нагрузку от сгорания на палец кисти, а также на шатун и коленчатый вал. Нагрузка сжатия также возникает на такте сжатия, хотя и в меньшей степени. Шатун также подвергается изгибающим напряжениям, которые возрастают пропорционально оборотам в минуту и выходной мощности.
«Судя по тому, что я видел, переходы между балкой и большим концом и там, где луч переходит в малый конец, эти два радиуса определенно испытывают наибольшее напряжение в большинстве случаев, на которые я смотрел», — сказал Стотерс. сказал.
Вот где в игру вступают дизайн, материалы и производство. При разработке своих новых удилищ BoostLine компания Wiseco стремилась превзойти спецификации рынка. Как сообщается, стержни BoostLine, идеально подходящие для применения с форсированными двигателями до 2000 лошадиных сил или для перестроенных двигателей для гонок на выносливость, имеют на 60% больше прочности на изгиб по сравнению со стержнями с двутавровой балкой. Компания провела значительные испытания готового продукта, но также первоначально с помощью анализа методом конечных элементов.
«Анализ методом конечных элементов — это, по сути, способ численного расчета напряжений в шатуне, и мы можем сделать это на компьютере, а это значит, что мы можем пройти через множество различных деталей», — сказал Стотерс. «Мы можем изменить дизайн. Мы можем изменить нагрузку, чтобы смоделировать то, что, по нашему мнению, увидит удочка. Очевидно, что нет полной замены физического тестирования, и моделировать то, что стержень будет видеть внутри двигателя, чрезвычайно сложно, потому что происходит много всего, но нам нравится упрощать и рассматривать то, что я называю каждым случаем нагружения отдельно.”
Чтобы выдерживать тяжелые нагрузки, инженеры Wiseco разработали стержни BoostLine с использованием японских спецификаций и из хромомолибденовой стали 4340. Он кованый, что может прибавлять в весе, но прочность материала первоклассная.
«При ковке вы берете материал и нагреваете его до любой температуры, которая должна быть для этого материала, чтобы он стал пластичным, а затем вы прессовали его с помощью большой ковочной машины в форму», — сказал Ник Дибласи, глобальный менеджер по автомобильной продукции и менеджер инжиниринг для Wiseco.«Это не наливает. По сути, вы берете очень горячий кусок материала и разбиваете его, придавая ему форму формы, и это выравнивает структуру зерна, чтобы стать прочнее. Таким образом, кованый кусок материала всегда будет прочнее, чем его заготовка ».
С точки зрения конструкции, три кармана на большом конце удилища BoostLine уменьшают вес в точках напряжения, где удилище было усилено. Wiseco также использует болты стержня ARP и включает инструкции по установке и смазке резьбы к каждому набору.
Wiseco рекомендует использовать датчик растяжения стержневого болта, а не установку крутящего момента для сборки двигателя. Это растяжение, как указал Стотерс, является ключом к поддержанию прижимной силы. В общем, это от 0,004 до 0,006 дюйма натяжения — примерно такой же толщины, как лист бумаги.
«Это чрезвычайно важно для обеспечения того, чтобы трение между болтами, смазкой и самим стержнем соответствовало испытаниям, которые мы провели», — сказал Стотерс.
В некоторых случаях штоки в конечном итоге весят больше стандартного, но меньше в других случаях, вероятно, когда используются заводские турбины.Стержни BoostLine — излишки для многих приложений двигателей, которые обычно встречаются в выходные дни НАСА. Однако для приложений с высокой мощностью или в случаях, когда надежность имеет первостепенное значение, они могут соответствовать всем требованиям. Boostline имеет номера деталей для двигателей Chevrolet с большим и малым блоком, двигателей GM LS, модульных двигателей Ford и двигателей Coyote, а также для популярных двигателей Honda, Mitsubishi, Nissan, Subaru, Toyota и VW.
«Если вы собираетесь эксплуатировать двигатель в течение 24 часов, эта удочка вам подойдет», — сказал Дибласи.«Если вы действительно хотели поместить туда что-то, о чем не хотели бы беспокоиться, это то, что вы хотели бы добавить туда».
РЕСУРСЫwww.wiseco.com
http://blog.wiseco.com/wisecos-new-2000hp-capable-boostline-connecting-rods
Изображение любезно предоставлено Wiseco
Шатун | Tractor & Construction Plant Wiki
Поршень (вверху) и шатун типичного автомобильного двигателя (шкала в сантиметрах)
В поршневом двигателе шатун или шатун соединяет поршень с кривошипом или коленчатым валом.Вместе с кривошипом они образуют простой механизм, преобразующий линейное движение во вращательное движение.
Шатуны также могут преобразовывать вращательное движение в поступательное. Исторически, до разработки двигателей, они впервые использовались для привода механизмов от водяных колес.
Поскольку шатун является жестким, он может передавать либо толчок, либо тягу, и, таким образом, стержень может вращать кривошип через обе половины оборота, то есть толкание поршня и толкание поршня.Раньше механизмы, например цепи, можно было только тянуть. В некоторых двухтактных двигателях требуется только толкать шатун.
Сегодня шатуны наиболее известны благодаря их использованию в поршневых двигателях внутреннего сгорания, таких как автомобильные двигатели. Они имеют конструкцию, явно отличающуюся от более ранних форм шатунов, используемых в паровых двигателях и паровозах.
Схема лесопилки римского Иераполиса, самого раннего известного станка, сочетающего шатун с кривошипом. [1]
Самые ранние свидетельства наличия шатуна появились в конце 3 века нашей эры на лесопилке римского Иераполиса. Он также появляется в двух восточно-римских лесопильных заводах VI века, раскопанных в Эфесе, соответственно, в Герасе. Кривошипно-шатунный механизм этих римских водяных мельниц преобразовывал вращательное движение водяного колеса в линейное движение пильных полотен. [1]
Где-то между 1174 и 1206 годами арабский изобретатель и инженер Аль-Джазари описал машину, которая включала шатун с коленчатым валом для перекачивания воды как часть водоподъемной машины, [2] [3] , но устройство было излишне сложным, что указывает на то, что он все еще не полностью понимал концепцию преобразования энергии. [4]
В Италии эпохи Возрождения самые ранние свидетельства — хотя и неправильно поняты — составные кривошип и шатун найдены в альбомах для рисования Такколы. [5] Звуковое представление вовлеченного движения показывает художника Пизанелло (ум. 1455), который показал поршневой насос с приводом от него. от водяного колеса и приводится в действие двумя простыми кривошипами и двумя шатунами. [5]
К 16 веку свидетельства кривошипов и шатунов в технологических трактатах и произведениях искусства Европы эпохи Возрождения становятся многочисленными; Одна только работа Агостино Рамелли «Разнообразные и искусственные машины» 1588 года содержит восемнадцать примеров, число, которое поднимается в Theatrum Machinarum Novum Георга Андреаса Беклера до 45 различных машин. [6]
Балочный двигатель с двумя шатунами (почти вертикальными) между горизонтальной балкой и кривошипами маховика
Первые паровые двигатели, атмосферный двигатель Ньюкомена, были одностороннего действия: его поршень работал только в одном направлении, поэтому они использовали цепь, а не шатун. Их выход качался вперед и назад, а не вращался непрерывно.
Крейцкопф стационарного парового двигателя: шток поршня слева, шатун справа
После этого паровые двигатели обычно имеют двойное действие: их внутреннее давление действует по очереди с каждой стороны поршня.Для этого требуется уплотнение вокруг штока поршня, и поэтому шарнир между поршнем и шатуном расположен снаружи цилиндра в большом блоке подшипников скольжения, называемом крейцкопфом.
Стержни паровоза, большая изогнутая штанга является шатуном.
В паровозе кривошипные штифты обычно устанавливаются непосредственно на одной или нескольких парах ведущих колес, а ось этих колес служит коленчатым валом. Шатуны, также называемые коренными стержнями ( в практике США ), проходят между кривошипными штифтами и крейцкопфами, где они соединяются с поршневыми штоками.Крейцкопфы или направляющие ствола также используются в больших дизельных двигателях, изготовленных для морских перевозок. Подобные стержни между ведущими колесами называются стяжными стержнями ( в британской практике ).
Шатуны небольших паровозов обычно имеют прямоугольное сечение, но на небольших локомотивах иногда используются стержни морского типа с круглым сечением. Стивен Левин, который строил как локомотивы, так и судовые двигатели, часто использовал круглые стержни.Модель A4 Pacifics от Гресли, такая как Mallard , имела шатун из легированной стали с перегородкой толщиной всего 3/8 дюйма.
На пароходах Western Rivers шатуны правильно называются питманов , а иногда неправильно называются рычагами самосвалов.
Двигатели внутреннего сгорания [править | править источник]
Отказ шатуна — одна из самых частых причин катастрофического отказа двигателя.
В современных автомобильных двигателях внутреннего сгорания шатуны обычно изготавливаются из стали для серийных двигателей, но могут быть изготовлены из алюминиевых сплавов T6-2024 и T651-7075 [ цитата необходима ] (для легкости и способности для поглощения сильных ударов за счет долговечности) или титана (для сочетания легкости с прочностью, при более высокой стоимости) для двигателей с высокими рабочими характеристиками или из чугуна для таких применений, как мотороллеры.Они не закреплены жестко на обоих концах, поэтому угол между шатуном и поршнем может изменяться по мере того, как шток перемещается вверх и вниз и вращается вокруг коленчатого вала. Шатуны, особенно в гоночных двигателях, могут называться стержнями «заготовки», если они выточены из цельной металлической заготовки (то есть выкованы до грубой формы), а не отлиты. Кованая сталь имеет лучшее внутреннее зерно. структура для прочности.
Малый конец прикрепляется к поршневому пальцу, поршневому пальцу или пальцу кисти, который в настоящее время чаще всего запрессовывается в шатун, но может поворачиваться в поршне, как «плавающий палец кисти».Головка шатуна соединяется с шейкой подшипника на ходу кривошипа, в большинстве двигателей, работающих со сменными вкладышами подшипника, доступными через болты шатуна , которые удерживают «крышку» подшипника на головке шатуна. Обычно в подшипнике и большом конце шатуна просверливается точечное отверстие, так что смазывающее моторное масло под давлением разбрызгивается на упорную сторону стенки цилиндра для смазывания хода поршней и поршневых колец. Большинство небольших двухтактных двигателей и некоторые одноцилиндровые четырехтактные двигатели избегают необходимости в насосной системе смазки за счет использования вместо этого подшипника качения, однако это требует, чтобы коленчатый вал был раздвинут, а затем снова вместе, чтобы заменить соединительный элемент. стержень.
Шатун находится под огромным напряжением от возвратно-поступательной нагрузки, представленной поршнем, фактически растягиваясь и сжимаясь при каждом обороте, и нагрузка увеличивается в квадрате увеличения частоты вращения двигателя. Отказ шатуна, обычно называемый «выбросом шатуна», является одной из наиболее распространенных причин катастрофического отказа двигателя в автомобилях, поскольку часто сломанный стержень проходит через боковую часть картера, что приводит к неисправности двигателя; это может быть результатом усталости рядом с физическим дефектом штока, нарушения смазки в подшипнике из-за неправильного обслуживания или выхода из строя болтов штока из-за дефекта или неправильной затяжки.Повторное использование стержневых болтов является обычной практикой, если болты соответствуют спецификациям производителя. Несмотря на то, что такие сбои часто возникают на телевизионных соревнованиях по автомобильным соревнованиям, на серийных автомобилях при повседневной эксплуатации такие сбои довольно редко. Это связано с тем, что производимые автозапчасти имеют гораздо больший коэффициент безопасности и часто более систематический контроль качества.
При создании двигателя с высокими рабочими характеристиками большое внимание уделяется шатунам, устранению концентраторов напряжений с помощью таких методов, как шлифование краев стержня до плавного радиуса, дробеструйное упрочнение для создания сжимающих поверхностных напряжений (для предотвращения образования трещин), балансировка всех узлов шатуна / поршня на одинаковый вес и магнафлюкс, чтобы выявить в противном случае небольшие трещины, которые могут привести к выходу штока из строя под нагрузкой.Кроме того, большое внимание уделяется затяжке болтов шатуна с точным указанным значением; часто эти болты необходимо заменить, а не использовать повторно. Большой конец штока изготавливается как единое целое и разрезается или раскалывается надвое, чтобы обеспечить точную посадку вокруг вкладыша подшипника большого конца. Поэтому «крышки» шатуна не могут быть взаимозаменяемыми между шатунами, и при восстановлении двигателя необходимо следить за тем, чтобы крышки разных шатунов не перепутались. Как на шатуне, так и на крышке подшипника обычно тиснится соответствующий номер позиции в блоке цилиндров.
Последние двигатели, такие как 4,6-литровый двигатель Ford и 2,0-литровый двигатель Chrysler, имеют шатуны, изготовленные с использованием порошковой металлургии, что позволяет более точно контролировать размер и вес при меньшем количестве механической обработки и меньшем количестве лишней массы, которую необходимо обработать для балансировки. Затем крышка отделяется от стержня в процессе разрушения, что приводит к неровной поверхности сопряжения из-за зерен металлического порошка. Это гарантирует, что при повторной сборке крышка будет идеально расположена по отношению к штоку, по сравнению с небольшими перекосами, которые могут возникнуть, если обе сопрягаемые поверхности будут плоскими.
Основным источником износа двигателя является боковое усилие, действующее на поршень через шатун со стороны коленчатого вала, что обычно приводит к изнашиванию цилиндра, придавая ему овальное поперечное сечение, а не круглое, что делает невозможным правильное уплотнение поршневых колец. стенки цилиндров. Геометрически видно, что более длинные шатуны уменьшают величину этой боковой силы и, следовательно, продлевают срок службы двигателя. Однако для данного блока цилиндров сумма длины шатуна плюс ход поршня является фиксированным числом, определяемым фиксированным расстоянием между осью коленчатого вала и верхней частью блока цилиндров, где крепится головка блока цилиндров; таким образом, для данного блока цилиндров более длинный ход поршня, обеспечивающий больший рабочий объем и мощность двигателя, требует более короткого шатуна (или поршня с меньшей высотой сжатия), что приводит к ускоренному износу цилиндра.
Составные стержни [править | править код]
Шарнирно-сочлененные шатуны
Многоцилиндровые многорядные двигатели, такие как V12, имеют мало места для многих шатунных шейек на ограниченной длине коленчатого вала. Это трудный для решения компромисс, и его последствия часто приводили к отказу двигателей (Sunbeam Arab, Rolls-Royce Vulture).
Самым простым решением, почти универсальным для двигателей дорожных автомобилей, является использование простых стержней, в которых цилиндры с обоих сторон имеют общую цапфу.Это требует, чтобы стержневые подшипники были на уже , что увеличивает нагрузку на подшипник и увеличивает риск выхода из строя высокопроизводительного двигателя. Это также означает, что противоположные цилиндры не совсем выровнены друг с другом.
В некоторых типах двигателей используются стержни ведущий / ведомый, а не простой тип, показанный на рисунке выше. Главный стержень несет один или несколько кольцевых штифтов, к которым болтами прикреплены большие концы подчиненных стержней гораздо меньшего размера на других цилиндрах. В некоторых конструкциях V-образных двигателей используется шток ведущий / ведомый для каждой пары противоположных цилиндров.Недостатком этого является то, что ход вспомогательного стержня немного короче главного, что увеличивает вибрацию в V-образном двигателе, что катастрофически характерно для Sunbeam Arab.
Штанги радиальных авиационных двигателей BMW 132
Радиальные двигатели обычно имеют главный шток для одного цилиндра и несколько рабочих штоков для всех остальных цилиндров в одном ряду.
Вилка и штанги лопастей
Обычное решение для высокопроизводительных авиадвигателей — это «вилкообразный» шатун.Один стержень разделен на две части на большом конце, а другой утончен, чтобы поместиться в эту вилку. Журнал по-прежнему используется между цилиндрами. В легендарном двигателе Rolls-Royce Merlin использовался этот стиль «вилки и лезвия».
- ↑ 1.0 1.1 Ritti, Grewe & Kessener 2007, стр. 161:
Из-за открытий, сделанных в Эфесе и Герасе, изобретение кривошипа и шатунной системы пришлось изменить с 13-го на 6-й век; Теперь рельеф Иераполя переносит его еще на три столетия назад, что подтверждает, что каменные пилорамы с водяной тягой действительно использовались, когда Авзоний писал свою «Мозеллу».
- ↑ Ахмад И Хасан. «Система кривошипно-шатун в непрерывно вращающейся машине».
- ↑
- ↑ Уайт, мл. 1962, стр. 170:
Однако то, что аль-Джазари не совсем понял значение кривошипа для соединения возвратно-поступательного движения с вращательным движением, показано его чрезвычайно сложным насосом, приводимым в действие посредством зубчатого колеса, эксцентрично установленного на его оси.
- ↑ 5,0 5,1 Уайт, мл. 1962 г., стр.113
- ↑ Уайт, мл. 1962, стр. 172
Источники [править | править код]
типов шатунов | На главную
Кейт Аллен Обновлено 21 июля 2017 г.
Шатуны, которые чаще всего используются в автомобильных двигателях, обычно используются в двигателях внутреннего сгорания. Шатуны соединяют поршни с коленчатым валом и обеспечивают движение жидкости между ними. В сельхозтехнике, легковых и грузовых автомобилях, строительной технике и любом другом типе транспортных средств с двигателями внутреннего сгорания используется какой-либо тип шатуна.
Кованые
Шатуны характеризуются процессом, используемым при их производстве. Процесс изготовления кованых шатунов заключается в формовании зерна выбранного материала, такого как стальной сплав, в заданной форме стержня. Производители используют различные типы стальных сплавов, включая сталь 4340 или хромоникелевый сплав. Сплав никель / хром увеличивает прочность шатуна, не делая готовый продукт хрупким.
Литые стержни
Литые стержни обычно выбирают производители оригинального оборудования, поскольку они выдерживают нагрузку стандартного двигателя и менее дороги в производстве.Литые шатуны имеют заметный шов посередине, отличающий его от кованых. Не используйте литые стержни в приложениях с высокой мощностью, более 450 и 6000 об / мин.
Металлический порошок
Другой выбор производителей оригинального оборудования — шатун из порошкового металла. Порошкообразную смесь металла прессуют в форму и нагревают при высоких температурах, чтобы расплавить смесь в твердую форму. Металлические стержни из порошкового металла обрабатываются незначительно, потому что они выходят из формы в основном в виде готового продукта.Эти стержни дешевле в производстве, чем стальные, и более прочные, чем литые.
Заготовка
Шатуны из заготовок обычно используются для гоночных автомобилей высокого класса. Стержни для заготовок изготавливаются из цельного куска стали или алюминия, они легче, прочнее и долговечнее, чем другие типы. Некоторые штанги для заготовок имеют особую конструкцию, которая снижает риск образования напряжений и облегчает проникновение в естественную структуру материала заготовки.
Как правильно установить крепеж шатуна!
Правильная установка шатунов — залог долгого срока службы двигателя.Здесь мы рассмотрим различные способы выполнения этой задачи, и какой из них работает лучше всего.
Возможно, в двигателе внутреннего сгорания нет более важного компонента, чем крепеж шатуна. Независимо от того, используется ли в конкретном шатуне конфигурация болт / гайка или конфигурация винта с головкой под ключ, характеристики крепежа шатуна имеют решающее значение. Понимание деталей правильной установки важно как для опытных производителей двигателей, так и для новичков.
Правильная установка крепежа шатуна имеет первостепенное значение для длительного срока службы двигателя.Шатун предназначен для того, чтобы воспринимать возвратно-поступательное движение поршня в канале ствола и превращать его во вращательное движение коленчатого вала, превращая силы сгорания в силы тяги. Крепежные детали, которые удерживают большой конец стержня вместе, могут сломать или сломать ваш высокопроизводительный двигатель.
Каждый фиксатор шатуна должен поддерживать свою зажимную нагрузку независимо от того, находится ли шатун в нижней мертвой точке (НМТ) или в верхней мертвой точке (ВМТ) в отверстии цилиндра.В ВМТ сложная задача крепежа — не допустить отслоения шатуна на его большом конце и позволить поршню врезаться в головку блока цилиндров.
«Стержневой болт по сути представляет собой чрезвычайно жесткую пружину, и мы полагаемся на эластичность материала при растяжении и отскоке, чтобы поддерживать правильную зажимную нагрузку во время работы», — говорит Майкл Скин, технический торговый представитель K1 Technologies.
Датчик натяжения болтов, такой как этот блок от ARP, необходим для правильной установки крепежных элементов шатуна.Датчик позволяет сравнивать длину неустановленного болта с установленным болтом, показывая, насколько точно болт растянулся.Независимо от того, что вы слышали в другом месте, проверка растяжения крепежа — лучший способ убедиться, что крепеж шатуна установлен правильно.
«Рекомендуемый метод точной затяжки болтов стержня — это использовать метод растяжения для правильной предварительной затяжки болта. Этот метод рекомендуется независимо от ситуации в двигателе, материала стержня или крепежа », — говорит Скин.
Это связано с тем, что простое измерение крутящего момента не дает точной информации о том, насколько растянута крепежная деталь, или о ее зажимной нагрузке; вместо этого измерение крутящего момента просто дает вам величину трения, необходимое для поворота застежки. На это может повлиять использование смазочного масла, молибденовой смазки или любой другой жидкости, которую вы видели на протяжении многих лет для установки болтов шатуна, и это определенно не самый точный способ определить, обеспечивает ли крепеж надлежащий зажим. нагрузка на шатун.
Измерить растяжение шатуна несложно, но для этого необходимо использовать датчик растяжения, который можно приобрести у ARP и других источников.
«Если болт недостаточно растянут, зажимного усилия не хватит, чтобы удерживать шток на месте. Это может привести к выкручиванию подшипника или поломке болта. В качестве альтернативы, если болт будет растянут сверх предела текучести крепежа, возможно, что болт выйдет из строя », — говорит Скин.
Перед установкой крышки и крепежа шатуна первым делом убедитесь, что у вас есть блокнот под рукой, чтобы записывать ваши измерения и предотвращать путаницу.Перед установкой каждую застежку необходимо измерить, чтобы отметить ее свободную длину в расслабленном состоянии. Каждый комплект шатунов K1 Technologies поставляется с крепежными деталями ARP 2000, которые имеют углубления на каждом конце крепежа, чтобы калибр можно было правильно отцентрировать на креплении для измерения его длины.
Угловой калибр также можно использовать как метод установки крепежных элементов шатуна. Это приемлемый метод, хотя и не такой точный, как растяжение болтов.Перед приложением крутящего момента вставьте концы шарика датчика натяжения в углубления на застежке.Вы почувствуете, что датчик растяжения встал на место в ямках. Обязательно отрегулируйте внешнее кольцо индикатора часового типа, чтобы убедиться, что оно находится в нулевом положении на лицевой стороне индикатора. Каждый крепеж будет иметь спецификацию растяжения, которую K1 Technologies предоставляет вместе с комплектом шатуна.
Здесь следует обратить внимание на два важных момента: убедитесь, что вы используете точный динамометрический ключ, и вы должны иметь возможность затянуть крепеж одним движением. Если вы остановитесь на полпути, он может дать неточные показания.Также необходимо иметь тиски для шатуна, чтобы удерживать шток в стабильном состоянии в процессе измерения растяжения.
Наличие надежного и точного динамометрического ключа критически важно, но этого недостаточно. На динамометрический ключ может влиять несколько внешних факторов, и его всегда следует использовать вместе с измерителем натяжения стержневого болта.Теперь вы можете заметить, что мы упомянули об использовании динамометрического ключа сразу после того, как сказали не использовать динамометрический ключ. Ну, это потому, что вы можете использовать динамометрический ключ как своего рода резервную копию измерителя натяжения.
Под этим мы подразумеваем следующее: как только вы определите, какой крутящий момент требуется для достижения надлежащего растяжения крепежа, вы можете определить значение крутящего момента, необходимое для достижения такого растяжения, а затем продублировать это значение на остальных крепежных деталях. Но вы можете видеть, насколько важным элементом этого процесса является надежный динамометрический ключ. Если гаечный ключ не подходит, значения будут неверными, и вы рискуете чрезмерно растянуть крепеж, что приведет к его разрушению. Если болт растягивается до предела текучести, он деформируется безвозвратно — а мы этого не хотим.
После того, как вы определили значение крутящего момента, необходимое для растягивания крепежа до нужной длины, можно повторить повторение для остальных крепежных элементов. Тем не менее, по-прежнему уместно продолжать измерять длину застежки в свободном и растянутом состоянии.
Тщательная и правильная установка крепежных элементов стержневых болтов обеспечит отличный старт вашему двигателю! Когда дело доходит до этого, использование подходящих инструментов — датчика растяжения, тисков шатуна и динамометрического ключа — может существенно повлиять на конструкцию вашего двигателя.Следует особо отметить то, что использование смазки может повлиять на растяжение болта, поскольку оно снижает трение. Из-за этого использование метода растяжения болта, без сомнения, является наиболее точным, потому что, если вы полагаетесь только на значения крутящего момента, вы можете получить значительно разную степень растяжения крепежа в зависимости от того, сколько смазки вы нанесете на нижнюю сторону крепежа.
«Затягивание крепежа одним крутящим моментом не является приемлемым методом установки крышки стержня и никогда не должен использоваться.Поскольку значение крутящего момента измеряет только сопротивление вращению, количество и тип смазки могут привести к слишком большому количеству переменных, чтобы убедиться, что крепежный элемент предварительно нагружен правильно », — говорит Скин.
Критически важно: если при снятии длина крепежа изменится более чем на 0,001 дюйма от предварительно установленной длины — да, вы должны измерить болты при разборке — ее необходимо заменить, поскольку она была растянута за пределы проектных ограничений.
Наконец, для случаев, когда метод растяжения просто невозможен по той или иной причине, Скин говорит, что у K1 есть опция.
«Хотя растяжение является рекомендуемым методом закрепления крепежных деталей при установке крышек штанг, мы предлагаем спецификации для затяжки с крутящим моментом + угол. Этот метод требует небольшого начального крутящего момента, за которым следует определенное количество градусов, и зависит от точного шага резьбы для правильного растяжения крепежа », — говорит Скин.
Для получения дополнительной информации посетите блог K1 Technologies!
Объяснение скорости поршня, угла штока и увеличенного смещения.
Внимательный взгляд на ход коленчатого вала и его влияние на среднюю скорость поршня, инерцию и контроль огромных разрушительных сил, действующих внутри двигателя.
Производители двигателей уже давно рассчитывают среднюю скорость поршня своих двигателей, чтобы помочь определить возможные потери мощности и опасные ограничения числа оборотов. Это математическое упражнение было особенно важно при увеличении общего рабочего объема с помощью коленчатого вала с ходовым механизмом, потому что средняя скорость поршня будет увеличиваться по сравнению со стандартным ходом при тех же оборотах.Но что, если бы существовала другая динамика двигателя, которая могла бы дать строителям лучшее представление о долговечности поршневого узла?
На видео выше показаны два двигателя, один с коротким ходом коленчатого вала, а другой со значительно более длинным ходом.Обратите внимание, что оба поршня достигают верхней мертвой точки и нижней мертвой точки одновременно, но поршень в двигателе с более длинным ходом (слева) должен двигаться значительно быстрее.
«Вместо того, чтобы сосредотачиваться на средней скорости поршня, обратите внимание на влияние силы инерции на поршень», — предлагает Дэйв Фасснер, руководитель отдела исследований и разработок K1 Technologies.
Давайте сначала рассмотрим определение средней скорости поршня, также называемой средней скоростью поршня. Это эффективное расстояние, на которое поршень проходит за заданную единицу времени, и для сравнения оно обычно выражается в футах в минуту (фут / мин).Стандартное математическое уравнение довольно простое:
Средняя скорость поршня (фут / мин) = (ход x 2 x об / мин) / 12
Есть более простая формула, но о математике позже. Скорость поршня постоянно изменяется, когда он перемещается от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ) и обратно в ВМТ за один оборот коленчатого вала. В ВМТ и НМТ скорость составляет 0 футов в минуту, и в какой-то момент во время хода вниз и вверх он будет ускоряться до максимальной скорости, а затем замедлится и вернется к 0 футов в минуту.
Когда поршень движется от нижней мертвой точки к верхней мертвой точке, на короткое время он полностью останавливается. Это создает огромную нагрузку на булавки для запястий. Показанные штифты Trend предлагаются с различной толщиной стенки, чтобы выдерживать необходимую нагрузку.Существуют формулы для расчета скорости поршня при каждом градусе вращения коленчатого вала, но обычно это гораздо больше информации, чем требуется большинству производителей двигателей. Традиционно они смотрят на среднюю или среднюю скорость поршня во время вращения кривошипа и, возможно, вычисляют максимальную скорость поршня.
Средняя скорость поршня — это общее расстояние, которое поршень проходит за один полный оборот коленчатого вала, умноженное на число оборотов двигателя. Очевидно, что скорость поршня увеличивается с увеличением числа оборотов в минуту, и скорость поршня также увеличивается с увеличением хода. Давайте посмотрим на небольшой пример.
Чтобы просмотреть все предложения K1 Technologies по коленчатому валу, щелкните ЗДЕСЬ
Шевроле с большим блоком и коленчатым валом с ходом 4 000 дюймов, работающим при 6500 об / мин, имеет среднюю скорость поршня 4333 фут / мин.Давайте еще раз рассмотрим формулу, использованную для расчета этого результата. Умножьте ход на 2, а затем умножьте это число на число оборотов в минуту. Это даст вам общее количество дюймов, которое поршень прошел за одну минуту. В данном случае формула: 4 (ход) x 2 x 6 500 (об / мин), что равно 52 000 дюймов. Чтобы прочитать это в футах в минуту, разделите на 12. Вот полная формула:
(4 x 2 x 6500) / 12 = 4333 фут / мин
Вы можете упростить формулу с помощью небольшого математического трюка. Разделите числитель и знаменатель в этом уравнении на 2, и вы получите тот же ответ.Другими словами, умножьте ход на число оборотов в минуту, а затем разделите на 6.
(4 x 6500) / 6 = 4333 фут / мин
С помощью этой более простой формулы мы вычислим среднюю скорость поршня при увеличении хода до 4 500 дюймов.
(4,5 x 6500) / 6 = 4875 футов в минуту
Как видите, средняя скорость поршня увеличилась почти на 13 процентов, хотя число оборотов в минуту не изменилось.
Снижение веса поршня играет огромную роль в создании вращающегося узла, способного выдерживать высокие обороты.Кажущийся незначительным граммовый вес поршня увеличивается экспоненциально с увеличением числа оборотов.Опять же, это средняя скорость поршня за весь ход. Чтобы рассчитать максимальную скорость, которую поршень достигает во время хода, требуется немного больше расчетов, а также длина шатуна и угол наклона штока в зависимости от положения коленчатого вала. Существуют онлайн-калькуляторы, которые вычисляют точную скорость поршня при любом заданном вращении коленчатого вала, но вот основная формула, которую часто используют производители двигателей, не требующая длины штока:
Максимальная скорость поршня (фут / мин) = ((Ход x π) / 12) x об / мин
Рассчитаем максимальную скорость поршня для нашего стокера BBC:
((4.5 x 3,1416) / 12) x 6500 = 7658 футов в минуту
Преобразуя футы в минуту в мили в час (1 фут в минуту = 0,011364 мили в час), этот поршень разгоняется от 0 до 87 миль в час примерно за два дюйма, а затем и обратно до нуля в оставшемся пространстве цилиндра глубиной 4,5 дюйма. Теперь представьте, что поршень BBC весит около 1,3 фунта, и вы можете получить представление об огромных силах, приложенных к коленчатому валу, шатуну и пальцу запястья — вот почему Фасснер предлагает посмотреть на силу инерции.
«Инерция — это свойство материи, которое заставляет ее сопротивляться любому изменению в своем движении», — объясняет Фусснер.«Этот принцип физики особенно важен при разработке поршней для высокопроизводительных приложений».
Когда шатун удлиняется, он обеспечивает более мягкий переход при изменении направления поршня. Более длинный шатун также уменьшает высоту сжатия поршня и может помочь снять вес с вращающегося узла.Сила инерции является функцией массы, умноженной на ускорение, и величина этих сил увеличивается как квадрат скорости двигателя.Другими словами, если вы удвоите частоту вращения двигателя с 3000 до 6000 об / мин, силы, действующие на поршень, не увеличатся — они увеличатся в четыре раза.
«Как только поршень поднимается вверх по цилиндру, он пытается продолжить движение», — напоминает Фусснер. «Его движение останавливается и немедленно прекращается только под действием шатуна и импульса коленчатого вала».
Из-за угловатости штока, на которую влияет длина шатуна и ход двигателя, поршень не достигает своей максимальной скорости вверх или вниз примерно до 76 градусов до и после ВМТ с точными положениями, зависящими от длины штока до точки. коэффициент хода », — говорит Фюсснер.
Шатуны Stroker , такие как эта кованая деталь LS7 от K1 Technologies, являются отличным способом увеличения рабочего объема. Однако при увеличении хода поршень должен ускоряться на каждом обороте быстрее, чтобы покрыть большую рабочую площадь стенки цилиндра. Ищете коленчатый вал LS Stroker? Кликните сюда.«Это означает, что поршень имеет угол поворота кривошипа примерно на 152 градуса для перехода от максимальной скорости к нулю и обратно к максимальной скорости в течение верхней половины хода. А затем примерно 208 градусов, чтобы проделать ту же последовательность во время нижней половины гребка.Следовательно, восходящая сила инерции больше, чем нисходящая сила инерции ».
Если не брать в расчет шатун, есть формула для расчета первичной силы инерции:
0,0000142 x вес поршня (фунты) x об / мин2 x ход (дюймы) = сила инерции
Вес поршня включает кольца, палец и фиксаторы. Давайте рассмотрим простой пример одноцилиндрового двигателя с ходом 3.000 дюймов (такой же, как у small-block 283ci и 302ci Chevy) и 1.Поршень в сборе на 000 фунтов (453,5 грамма) при 6000 об / мин:
0,0000142 x 1 x 6000 x 6000 x 3 = 1534 фунта
С помощью некоторых дополнительных вычислений, использующих длину и ход штока, можно получить поправочный коэффициент для повышения точности результатов силы инерции.
Радиус кривошипа ÷ Длина стержня
«Из-за воздействия шатуна сила, необходимая для остановки и повторного запуска поршня, максимальна в ВМТ», — говорит Фусснер. «Эффект шатуна заключается в увеличении первичной силы в ВМТ и уменьшении первичной силы в НМТ на этот коэффициент R / L.”
В этом примере радиус равен половине хода коленчатого вала (1,5 дюйма), деленной на длину стержня 6 000 дюймов, что дает коэффициент 0,25 или 383 фунта (1,534 x 0,25 = 383). Этот коэффициент добавляется к исходной силе инерции для хода вверх и вычитается при движении вниз.
Оба кривошипа слева и справа находятся в одной и той же точке при каждом вращении. Однако поршню слева придется двигаться намного быстрее, чтобы достичь верхней мертвой точки одновременно с поршнем справа.«Таким образом, действительная восходящая сила в ВМТ становится 1917 фунтов, а фактическая направленная вниз сила в НМТ — 1151 фунт», — говорит Фасснер. «Эти силы изменяются прямо пропорционально весу поршневого узла и длине штока, а также пропорционально квадрату частоты вращения двигателя. Следовательно, эти цифры можно рассматривать как базовые, чтобы легко оценить силы, создаваемые в двигателе любого другого размера ».
Между прочим, средняя скорость поршня для этого 1-цилиндрового двигателя при 6000 об / мин составляет 3000 футов в минуту, а максимальная скорость поршня (с использованием нашей предыдущей формулы) составляет 4712 футов в минуту.
Что произойдет, если вы увеличите ход с 3.000 дюймов до 3.250 дюймов? Во-первых, средняя скорость поршня увеличивается до 3250 футов в минуту, а максимальная скорость поршня увеличивается до 5105 футов в минуту. Затем основная сила увеличивается с 1534 фунта до 1661 фунта. Также есть изменение при добавлении нового коэффициента R / L 0,27 (1,625 ÷ 6.000). Фактическая восходящая сила в ВМТ становится 2 109 фунтов, а фактическая сила, направленная вниз в НМТ, становится 1213 фунтов.
«Если мы увеличим частоту вращения двигателя на 3.Ход от 250 дюймов до 7000 об / мин, при прочих равных условиях первичное усилие увеличивается до 2261 фунта », — говорит Фусснер. «Затем примените коэффициент R / L 0,27, и фактическая сила, направленная вниз, станет 1,651 фунта. Фактическая восходящая сила в ВМТ становится 2 871 фунт. Это почти полторы тонны! »
Теперь рассмотрим эффекты более легкого поршня. При сохранении хода 3,20 дюйма и 7000 об / мин, но при использовании поршня, который весит 340 граммов (0,750 фунта), максимальное усилие снижается с 2871 фунта до 2154 фунта, или на 717 фунтов меньшего усилия.Такая же более легкая конфигурация поршня будет иметь силу в 1238 фунтов, необходимую для остановки и перезапуска поршня при НМТ, что на 413 фунтов меньше.
«Таким образом, с каждым полным оборотом двигатель будет испытывать на 1130 фунтов меньше силы инерции с более легким поршневым узлом», — говорит Фусснер. «Это уменьшение силы инерции, конечно, будет применяться к каждому цилиндру в многоцилиндровом двигателе. Двигатель, работающий на 7000 об / мин, будет останавливаться и запускать каждый поршень 14000 раз в минуту ».
Когда поршень достигает верхней мертвой точки на такте выпуска, у него нет подушки сжатия, которая могла бы замедлить его.Вместо этого шатун принимает на себя всю тяжесть силы, действующей на его балку, и пытается отделить его крышку. Качественные шатуны имеют первостепенное значение для высокомощного двигателя с высокими оборотами. Ищете кованые шатуны? Кликните сюда!Средняя и максимальная частота вращения поршня по-прежнему являются ценными вычислениями для любого производителя двигателей, который вносит изменения в проверенную формулу. Превышение средней скорости поршня 5000 футов в минуту должно привлечь ваше внимание и побудить к переосмыслению выбора деталей. Чрезмерная скорость поршня может привести к непостоянной смазке стенки цилиндра, а в некоторых ситуациях поршень действительно будет ускоряться быстрее, чем фронт пламени во время сгорания.В то время как первое может вызвать поломку деталей, второе приводит к потере мощности.
Поршни также должны быть максимально легкими без ущерба для требуемой прочности и долговечности. Силы инерции будут растягивать шатуны и сопротивляться ускорению коленчатого вала, что опять же потенциально может привести к отказу деталей и снижению мощности.
«Мы знаем, что обычным показателем, который на протяжении многих лет используется для предположения, что зона опасности структурной целостности поршня в работающем двигателе — это средняя скорость поршня», — резюмирует Фусснер.«Как инструктор по прыжкам с парашютом сказал своему ученику, болит не скорость падения, а внезапная остановка. Так и с поршнями. Поэтому вместо того, чтобы сосредотачиваться только на средней скорости поршня, давайте решим также рассмотреть влияние силы инерции на поршень и то, что мы можем сделать, чтобы уменьшить эту силу. А если это невозможно, убедитесь, что компоненты достаточно прочны, чтобы выдержать поставленную нами задачу ».
«Хотя увеличение длины штока смягчит инерционную нагрузку за счет изменения вышеупомянутого отношения R / L, оно не приведет к снижению средней скорости поршня, потому что до тех пор, пока не будет изменен ход», — продолжает Фусснер.«Поршень должен пройти такое же расстояние за один оборот коленчатого вала, независимо от длины штока. Скорость — это расстояние, пройденное за единицу времени ».
Последнее замечание по скорости поршня — 2,500 футов в минуту считалось верхним пределом скорости поршня не так давно. Важно учитывать, что средняя скорость поршня также используется в качестве ориентира для рассмотрения других компонентов двигателя, таких как шатуны и коленчатые валы. На заре создания горячих родов у большинства двигателей были чугунные кривошипы и шатуны, а также литые алюминиевые поршни, которые не так прочны, как детали двигателей сегодня.
«Таким образом, увеличение прочности этих деталей позволило более чем вдвое увеличить безопасную среднюю скорость поршня до 5000 футов в минуту и более», — говорит Фасснер. «Другой фактор — это использование. Будет ли двигатель работать в течение длительного времени с высокой скоростью поршня или для быстрого прохождения по тормозной полосе? Уменьшение времени выдержки при высоких скоростях поршня увеличивает надежность. Прочные и легкие компоненты смогут выдерживать более высокие скорости поршней, чем тяжелые компоненты с меньшей прочностью ».