Разное

Емкость фарад: Фарад — это… Что такое Фарад?

Фарад — это… Что такое Фарад?

Фара́д (обозначение: Ф, F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названа в честь английского физика Майкла Фарадея.

1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

1 Ф = 1 Кл/1 В = I·T/U.
Ф = А² · с4 · кг−1 · м−2 = Дж/В2 = Кл2/Дж = А · с / В = с/Ом.

Таким образом, конденсатор ёмкостью 1Ф, в идеале, может зарядиться до 1В при зарядке током 1А в течение 1 секунды. На практике же, ёмкость зависит от напряжения на обкладках конденсатора.

Фарад — очень большая ёмкость для уединённого проводника. Ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца. Ёмкость же Земли (точнее, шара размером с Землю, используемого как уединённый проводник) составляет около 710 микрофарад.

Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до десятков фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до 40 фарад[1].

Область применения

Фарад измеряет электрическую ёмкость, то есть характеризует заряды, создаваемые электрическими полями. Например в фарадах (и производных единицах) измеряют ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов.

Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах — ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

Кратные и дольные единицы

Образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф йоттафарад ИФ YF 10−24 Ф йоктофарад иФ yF
     применять не рекомендуется      не применяются или редко применяются на практике
  • В советской практике использовались только две единицы — микрофарада и пикофарада. Ёмкость в 1-100 мФ и нФ выражалась в тысячах микрофарад и пикофарад соответственно. Ёмкость в 100-1000 мФ и нФ выражалась в десятых долях фарады и микрофарады соответственно. Никакие другие единицы использовать было не принято.
    • Также на схемах электрических цепей и часто в маркировке ранних конденсаторов советского производства число без буквы обозначало величину в пикофарадах, а с буквой м либо m — в микрофарадах. Этот нюанс надо учитывать при чтении схем в старых чертежах журналах советского издания, поскольку обычно одиночная буква «м» обозначает «милли-».
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u (uF вместо µF) из-за отсутствия в раскладке греческих букв.

Связь с единицами измерения в других системах

  • Сантиметр (другое название — статфарад, статФ) — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме.
    • 1 статФ ≈ 1,1126… пФ.
    • 1 Ф = 8,9875517873681764×1011 статФ (точно). Коэффициент равен с2×10−5 Ф/см = 100/(4πε0).
  • Абфарад — единица электрической ёмкости в СГСМ; очень большая единица, 1 абФ = 10
    9
    Ф = 1 ГФ.

См. также

Примечания

  1. Однако ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

Фарад — это… Что такое Фарад?

Фара́д (обозначение: Ф, F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названа в честь английского физика Майкла Фарадея.

1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

1 Ф = 1 Кл/1 В = I·T/U.
Ф = А² · с4 · кг−1 · м−2 = Дж/В2 = Кл2/Дж = А · с / В = с/Ом.

Таким образом, конденсатор ёмкостью 1Ф, в идеале, может зарядиться до 1В при зарядке током 1А в течение 1 секунды. На практике же, ёмкость зависит от напряжения на обкладках конденсатора.

Фарад — очень большая ёмкость для уединённого проводника. Ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца. Ёмкость же Земли (точнее, шара размером с Землю, используемого как уединённый проводник) составляет около 710 микрофарад.

Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до десятков фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до 40 фарад[1].

Область применения

Фарад измеряет электрическую ёмкость, то есть характеризует заряды, создаваемые электрическими полями. Например в фарадах (и производных единицах) измеряют ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов.

Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах — ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

Кратные и дольные единицы

Образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф
нанофарад
нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф йоттафарад ИФ YF 10−24 Ф йоктофарад иФ yF
     применять не рекомендуется      не применяются или редко применяются на практике
  • В советской практике использовались только две единицы — микрофарада и пикофарада. Ёмкость в 1-100 мФ и нФ выражалась в тысячах микрофарад и пикофарад соответственно. Ёмкость в 100-1000 мФ и нФ выражалась в десятых долях фарады и микрофарады соответственно. Никакие другие единицы использовать было не принято.
    • Также на схемах электрических цепей и часто в маркировке ранних конденсаторов советского производства число без буквы обозначало величину в пикофарадах, а с буквой м либо m — в микрофарадах. Этот нюанс надо учитывать при чтении схем в старых чертежах журналах советского издания, поскольку обычно одиночная буква «м» обозначает «милли-».
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u (uF вместо µF) из-за отсутствия в раскладке греческих букв.

Связь с единицами измерения в других системах

  • Сантиметр (другое название — статфарад, статФ) — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме.
    • 1 статФ ≈ 1,1126… пФ.
    • 1 Ф = 8,9875517873681764×1011 статФ (точно). Коэффициент равен с2×10−5 Ф/см = 100/(4πε0).
  • Абфарад — единица электрической ёмкости в СГСМ; очень большая единица, 1 абФ = 109 Ф = 1 ГФ.

См. также

Примечания

  1. Однако ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

Фарад — это… Что такое Фарад?

Фара́д (обозначение: Ф, F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названа в честь английского физика Майкла Фарадея.

1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

1 Ф = 1 Кл/1 В = I·T/U.
Ф = А² · с4 · кг−1 · м−2 = Дж/В2 = Кл2/Дж = А · с / В = с/Ом.

Таким образом, конденсатор ёмкостью 1Ф, в идеале, может зарядиться до 1В при зарядке током 1А в течение 1 секунды. На практике же, ёмкость зависит от напряжения на обкладках конденсатора.

Фарад — очень большая ёмкость для уединённого проводника. Ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца. Ёмкость же Земли (точнее, шара размером с Землю, используемого как уединённый проводник) составляет около 710 микрофарад.

Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до десятков фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до 40 фарад[1].

Область применения

Фарад измеряет электрическую ёмкость, то есть характеризует заряды, создаваемые электрическими полями. Например в фарадах (и производных единицах) измеряют ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов.

Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах — ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

Кратные и дольные единицы

Образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф йоттафарад ИФ YF 10−24 Ф йоктофарад иФ yF
     применять не рекомендуется      не применяются или редко применяются на практике
  • В советской практике использовались только две единицы — микрофарада и пикофарада. Ёмкость в 1-100 мФ и нФ выражалась в тысячах микрофарад и пикофарад соответственно. Ёмкость в 100-1000 мФ и нФ выражалась в десятых долях фарады и микрофарады соответственно. Никакие другие единицы использовать было не принято.
    • Также на схемах электрических цепей и часто в маркировке ранних конденсаторов советского производства число без буквы обозначало величину в пикофарадах, а с буквой м либо m — в микрофарадах. Этот нюанс надо учитывать при чтении схем в старых чертежах журналах советского издания, поскольку обычно одиночная буква «м» обозначает «милли-».
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u (uF вместо µF) из-за отсутствия в раскладке греческих букв.

Связь с единицами измерения в других системах

  • Сантиметр (другое название — статфарад, статФ) — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме.
    • 1 статФ ≈ 1,1126… пФ.
    • 1 Ф = 8,9875517873681764×1011 статФ (точно). Коэффициент равен с2×10−5 Ф/см = 100/(4πε0).
  • Абфарад — единица электрической ёмкости в СГСМ; очень большая единица, 1 абФ = 109 Ф = 1 ГФ.

См. также

Примечания

  1. Однако ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

Фарады, микрофарады, нанофарады и пикофарады: измерение электрической емкости

Среди разных электрических параметров, которые необходимо измерять при наладке электросхем, есть электрическая ёмкость.

Конденсаторы

Важно! Электрическая ёмкость конденсаторов и проводов не имеет ничего общего с электрохимической ёмкостью батарей и аккумуляторов.

В каких единицах измеряется ёмкость

Электрическая ёмкость – это способность тел накапливать заряд. Таким свойством обладают кабеля, конденсаторы и другие элементы электросетей и схем. Она есть также у отдельно расположенных (находящихся далеко от других тел) проводников и измеряется в фарадах. Своё название эта единица получила по имени физика Майкла Фарадея.

1 фарад – это большая величина. Такую ёмкость имеет металлический шар в 13 раз больше Солнца. Шар размером в Землю имеет всего 710 микрофарад.

Обычно, говоря о том, что измеряется в фарадах, имеют в виду конденсатор. На элементах до 9999 пикофарад она указывается просто цифрами, без обозначения единиц измерения. С 9999 пикофарад до 9999 микрофарад кроме числа наносится обозначение единицы измерения: мкФ или uF.

Кроме пикофарад и микрофарад, ёмкость измеряется также в нанофарадах (nF). 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.

Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Измерение электрической ёмкости

Основное свойство конденсаторов – они не пропускают постоянный ток, а сопротивление переменному току тем меньше, чем выше его частота. Поэтому измерение элемента сводится к измерению его сопротивления на определённой частоте и вычислению её по соответствующей формуле.

На практике это делается специальными приборами или мультиметром, в котором есть эта функция.

Измерение электрической ёмкости

Применение конденсаторов

Конденсаторы применяются во всех областях электротехники и в электронных устройствах любой сложности:

  • Вместе с катушками индуктивности или активными сопротивлениями входят в конструкцию фильтров определённой заранее заданной или меняющейся частоты, а также колебательных контурах и генераторах. Такие фильтры используются в радиоприёмниках, цветомузыкальных установках и других устройствах;
  • В блоках питания и выпрямителях сглаживают пульсации постоянного тока после диодного моста. Используются электролитические конденсаторы от нескольких до тысяч микрофарад;
  • Отдают свой заряд быстро, в результате чего образуется кратковременный импульс большой мощности. Это свойство используется в фотовспышках, электрошокерах, импульсных лазерах и многих других;
  • Конденсатор обладает реактивным сопротивлением и практически не греется во время работы. Это позволяет использовать его в качестве токоограничивающего сопротивления в блоках питания малой мощности;
  • При работе электродвигателей, трансформаторов и других индуктивных нагрузок, кроме активной, происходит потребление реактивной (индуктивной) мощности. Для её компенсации и снижения потребления электроэнергии параллельно вводным автоматам включаются конденсаторы;
  • Измерение перемещений на малые расстояния и влажности. Параметры устройства очень сильно зависят от расстояния между электродами и влажности диэлектрика между ними;
  • Фазосдвигающие устройства. Применяются для запуска электродвигателей от однофазной сети переменного тока, как однофазных, так и трёхфазных;
  • Заряд и разряд через сопротивление продолжается некоторое время, в течение которого напряжение меняется по экспоненциальному закону. Это позволяет, используя R-C-цепочки или генератор тока, реализовать схемы с задержкой времени на включение или отключение исполнительного механизма, а также генератор импульсов и другие схемы.

R-C-цепочки

Электрическая ёмкость – важная величина, без измерения которой невозможны электроника и электротехника.

Видео

Оцените статью:

Фарад единица измерения единица измерения конденсатор сколько

Фарад.

 

 

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ). Имеет русское обозначение – Ф и международное обозначение – F.

 

Фарад, как единица измерения

Применение фарада

Представление фарада в других единицах измерения – формулы

Кратные и дольные единицы фарада

Другие единицы измерения

 

Фарад, как единица измерения:

Фарад – единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея. Прежнее название – фарада.

Фарад как единица измерения имеет русское обозначение – Ф и международное обозначение – F.

1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон (Кл) создаёт между обкладками конденсатора напряжение 1 вольт (В).

Ф = Кл/В.

1 Ф = 1 Кл/1 В.

Если конденсатор ёмкостью в 1 фарад заряжать током 1 ампер, то напряжение на обкладках будет возрастать на 1 вольт каждую секунду.

Ф = А · с / В.

1 Ф = 1 А · 1 с / 1 В.

Фарад — очень большая ёмкость. Ёмкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с Землю, как уединенного проводника) составляет всего около 700 микрофарад.

В Международную систему единиц фарад введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада.

 

Применение фарада:

В фарадах измеряют электрическую ёмкость проводников, кабелей, межэлектродные ёмкости различных приборов и конденсаторов, то есть их способность накапливать электрический заряд.

Различается электрическую ёмкость и электрохимическую ёмкость. Электрохимическую ёмкость применяется к обычным батарейкам и аккумуляторам. Она имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

 

Представление фарада в других единицах измерения – формулы:

Через основные и производные единицы системы СИ фарад выражается следующим образом:

Ф = Кл / В.

Ф = А · с / В.

Ф = Дж / В2.

Ф = Вт · с / В2. 

Ф = Н · м / В2.

Ф = Кл · м / Дж.

Ф = Кл2 / Н · м.

Ф = с2 · Кл2 / кг · м2.

Ф = А2 · с4 / кг · м2.

Ф = с / Ом.

Ф = 1 / Ом · Гц.

Ф = с2 / Ом · Гн.

где Ф – фарад, А – ампер, В – вольт, Кл – кулон, Дж – джоуль, м – метр, Н – ньютон, с – секунда, Вт – ватт, кг – килограмм, Ом – ом, Гц – герц, Гн – генри.

 

Кратные и дольные единицы фарада:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф иоттафарад ИФ YF 10−24 Ф иоктофарад иФ yF

 

Источник: https://ru.wikipedia.org/wiki/Фарад

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

карта сайта

перевод 1 2 4 5 10 100 фарад единица измерения в джоули формула
перевести микрофарады пикофарады в фарады
конденсатор емкостью 1 2 4 10 фарада википедия емкость конденсатора фарад это сколько
вольт на фарад
мкф в фарады
нанофарады в фарады
что измеряется в фарадах
фарады в ампер

 

Коэффициент востребованности 3 818

Фарад (н) — RapidTables.org

Фарад — это единица измерения емкости. Он назван в честь Майкла Фарадея.

Фарада измеряет, сколько электрического заряда накоплено на конденсаторе.

1 фарад — это емкость конденсатора, который имеет заряд 1 кулон при падении напряжения в 1 вольт .

1F = 1C / 1V

Таблица значений емкости в Фарадах

название символ преобразование пример
пикофарад пФ 1pF = 10 -12 Р C = 10 пФ
нанофарад нФ 1nF = 10 -9 Ф C = 10 нФ
микрофарад мкФ 1 мкФ = 10 -6 F C = 10 мкФ
миллифарад мФ 1 мФ = 10 -3 Ф C = 10 мФ
фарад F   C = 10F
килофарад кФ 1кФ = 10 3 Ф C = 10кФ
мегафарад MF 1MF = 10 6 F C = 10MF

Пикофарад (пФ) в Фарад (F) преобразование

Емкость C в фарадах (F) равна емкости C в пикофарадах (пФ), умноженной на 10-12 :

C (F) = C (пФ) × 10-12

Пример — преобразовать 30 пФ в фарады:

C (F) = 30 пФ × 10-12 = 30 × 10-12 Ф

Преобразование нанофарадов (нФ) в Фарады (F)

Емкость C в фарадах (F) равна емкости C в нанофарадах (нФ), умноженной на 10 -9 :

C (F) = C (нФ) × 10-9

Пример — преобразовать 5 нФ в фарады:

C (F) = 5 нФ × 10-9 = 5 × 10-9 Ф

Конвертация из микрофарадов (мкФ) в фарады (Ф)

Емкость C в фарадах (F) равна емкости C в микрофарадах (мкФ), умноженной на 10-6 :

C (F) = C (мкФ) × 10-6

Пример — преобразовать 30 мкФ в фарады:

C (F) = 30 мкФ × 10-6 = 30 × 10-6 F = 0,00003 F

 


Смотрите также

Фарады, микрофарады, нанофарады и пикофарады: измерение электрической емкости

Основной параметр:ёмкостьЕдиница измерения:

Фарад

Обозначениеконденсатора

на схемах

Конденсатор — это пассивный электронный прибор, который способен накапливать электрический заряд (заряжаться). Основной характеристикой конденсаторов является емкость, которую измеряют в фарадах (Ф, F).

  • Фарад — большая величина, на практике используются дольные единицы измерения емкости конденсаторов: микрофарады (мкФ, µF), нанофарады (нФ, nF), пикофарады (пФ, pF).
  • 1 Ф = 1 000 000 мкФ
  • 1 мкФ = 1 000 нФ = 1 000 000 пФ
  • 1 нФ = 1 000 пФ

Обозначениеэлектролитическогоконденсатора

на схемах

Номинал конденсатора на схемах указывают рядом с его обозначением. При емкости менее 10000 пФ ставят число пикофарад без обозначения размерности, например, 22, 180, 6800. Для емкости 0,01 мкФ и более ставят число микрофарад. Зарубежные обозначения часто заменяют греческую букву µ (мю) на латинскую u («uF» вместо «µF»).

Конденсаторы используют для сглаживания тока в электрических цепях, в колебательных системах (колебательных контурах, генераторах импульсов, мультивибраторах).

Конденсаторы состоят из двух пластин (обкладок), разделенных слоем диэлектрика. По материалу диэлектрика конденсаторы разделяют на керамические, электролитические, бумажные, слюдяные и другие.

Керамическиеконденсаторы

Керамические конденсаторы имеют емкость от единиц до тысяч пикофарад. Электролитические конденсаторы обладают большей емкостью, которая может достигать тысяч микрофарад. Большинство электролитических конденсаторов имеют положительный и отрицательный полюса, что требует включения их в схемы с соблюдением полярности.

Электролитическийконденсатор

На корпусе электролитического конденсатора в большинстве случаев есть полоска, обозначающая отрицательный вывод. Кроме того, длина положительного вывода конденсатора немного больше, чем отрицательного.

Конденсаторы имеют рабочее напряжение, которое чаще всего указывают на корпусе. При подборе конденсатора следует выбирать конденсатор с напряжением равным или большим, указанному в схеме.

  1. Цифровая кодировка конденсаторов
  2. При обозначении номинала на керамических конденсаторах используется цифровая кодировка, в которой последняя цифра обозначает количество нулей (емкость в пикофарадах).
  3. 681 — 680 пФ
  4. 102 — 1 000 пФ
  5. 103 — 10 000 пФ (0.01 мкФ)
  6. 104 — 100 000 пФ (0.1 мкФ)
  7. 154 — 150 000 пФ (0.15 мкФ)
  8. 224 — 220 000 пФ (0.22 мкФ)

При параллельном соединении конденсаторов их емкость складывается. А допустимое напряжение будет равно напряжению конденсатора с самым малым значением этого напряжения.

При последовательном соединении конденсаторов общую емкость можно рассчитать по приводимой формуле. Общее допустимое напряжение при этом будет равно сумме всех допустимых напряжений конденсаторов.

Переменный и подстроечный конденсатор

Обозначениепеременного и подстроечного

конденсатора на схемах

  • Конденсаторы могут обладать не только постоянной емкостью, но и переменной емкостью, которую можно плавно менять в заданных пределах.
  • Конденсаторы с переменной емкостью используют в колебательных контурах радиоприемников и ряде других устройств.
  • Подстроечные конденсаторы применяются для настройки работы электронной схемы, когда в процессе работы устройства их емкость не меняется.), скобки и π (число пи), уже поддерживаются на настоящий момент.
  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘микрофарад [мкФ]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘фарад [Ф]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.
  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘134 микрофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микрофарад’ или ‘мкФ’.

    После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение.

    Как вариант, преобразуемое значение можно ввести следующим образом: ’74 мкФ в Ф‘ или ’28 мкФ сколько Ф‘ или ’22 микрофарад -> фарад‘ или ’95 мкФ = Ф‘ или ’19 микрофарад в Ф‘ или ‘6 мкФ в фарад‘ или ‘5 микрофарад сколько фарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(88 * 57) мкФ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′.

    Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 9,999 999 909 ×1020. В этой форме представление числа разделяется на экспоненту, здесь 20, и фактическое число, здесь 9,999 999 909.

    В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 9,999 999 909 E+20. В частности, он упрощает просмотр очень больших и очень маленьких чисел.

    Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 999 999 990 900 000 000 000.

    Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    Сколько фарад в 1 микрофарад?

    1 микрофарад [мкФ] = 0,000 001 фарад [Ф] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования микрофарад в фарад.

    Источник: https://www.preobrazovaniye-yedinits.info/preobrazovat+mikrofarad+v+farad.php

    Фарад — это… Что такое Фарад?

    Фара́д (обозначение: Ф, F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названа в честь английского физика Майкла Фарадея.

    1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

    1 Ф = 1 Кл/1 В = I·T/U.
    Ф = А² · с4 · кг−1 · м−2 = Дж/В2 = Кл2/Дж = А · с / В = с/Ом.

    Таким образом, конденсатор ёмкостью 1Ф, в идеале, может зарядиться до 1В при зарядке током 1А в течение 1 секунды. На практике же, ёмкость зависит от напряжения на обкладках конденсатора.

    Фарад — очень большая ёмкость для уединённого проводника. Ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца. Ёмкость же Земли (точнее, шара размером с Землю, используемого как уединённый проводник) составляет около 710 микрофарад.

    Ионистор со взаимной ёмкостью в 1 фарад.

    Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до десятков фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до 40 фарад[1].

    Область применения

    Фарад измеряет электрическую ёмкость, то есть характеризует заряды, создаваемые электрическими полями. Например в фарадах (и производных единицах) измеряют ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов.

    Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах — ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

    Кратные и дольные единицы

    Образуют с помощью стандартных приставок СИ.

    Кратные
    Дольные
    величина
    название
    обозначение
    величина
    название
    обозначение
    101 Ф

    10−1 Ф

    102 Ф

    10−2 Ф

    103 Ф

    10−3 Ф

    106 Ф

    10−6 Ф

    109 Ф

    10−9 Ф

    1012 Ф

    10−12 Ф

    1015 Ф

    10−15 Ф

    1018 Ф

    10−18 Ф

    1021 Ф

    10−21 Ф

    1024 Ф

    10−24 Ф

    декафарад даФ daF децифарад дФ dF
    гектофарад гФ hF сантифарад сФ cF
    килофарад кФ kF миллифарад мФ mF
    мегафарад МФ MF микрофарад мкФ µF
    гигафарад ГФ GF нанофарад нФ nF
    терафарад ТФ TF пикофарад пФ pF
    петафарад ПФ PF фемтофарад фФ fF
    эксафарад ЭФ EF аттофарад аФ aF
    зеттафарад ЗФ ZF зептофарад зФ zF
    йоттафарад ИФ YF йоктофарад иФ yF
         применять не рекомендуется      не применяются или редко применяются на практике
    • В советской практике использовались только две единицы — микрофарада и пикофарада. Ёмкость в 1-100 мФ и нФ выражалась в тысячах микрофарад и пикофарад соответственно. Ёмкость в 100-1000 мФ и нФ выражалась в десятых долях фарады и микрофарады соответственно. Никакие другие единицы использовать было не принято.
      • Также на схемах электрических цепей и часто в маркировке ранних конденсаторов советского производства число без буквы обозначало величину в пикофарадах, а с буквой м либо m — в микрофарадах. Этот нюанс надо учитывать при чтении схем в старых чертежах журналах советского издания, поскольку обычно одиночная буква «м» обозначает «милли-».
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u (uF вместо µF) из-за отсутствия в раскладке греческих букв.

    Связь с единицами измерения в других системах

    • Сантиметр (другое название — статфарад, статФ) — единица электрической ёмкости в СГСЭ и гауссовой системе, ёмкость шара радиусом 1 см в вакууме.
      • 1 статФ ≈ 1,1126… пФ.
      • 1 Ф = 8,9875517873681764×1011 статФ (точно). Коэффициент равен с2×10−5 Ф/см = 100/(4πε0).
    • Абфарад — единица электрической ёмкости в СГСМ; очень большая единица, 1 абФ = 109 Ф = 1 ГФ.

    См. также

    Примечания

    1. Однако ёмкость т. н. ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

    Источник: https://dic.academic.ru/dic.nsf/ruwiki/10505

    Сокращённая запись численных величин

    Радиоэлектроника для начинающих

    • При сборке электронных схем волей неволей приходится пересчитывать величины сопротивлений резисторов, ёмкостей конденсаторов, индуктивность катушек.
    • Так, например, возникает необходимость переводить микрофарады в пикофарады, килоомы в омы, миллигенри в микрогенри.
    • Как не запутаться в расчётах?
    • Если будет допущена ошибка и выбран элемент с неверным номиналом, то собранное устройство будет неправильно работать или иметь другие характеристики.

    Такая ситуация на практике не редкость, так как иногда на корпусах радиоэлементов указывают величину ёмкости в нанофарадах (нФ), а на принципиальной схеме ёмкости конденсаторов, как правило, указаны в микрофарадах (мкФ) и пикофарадах (пФ). Это вводит многих начинающих радиолюбителей в заблуждение и как следствие тормозит сборку электронного устройства.

    Чтобы данной ситуации не происходило нужно научиться простым расчётам.

    Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах нужно ознакомиться с таблицей размерности. Уверен, она вам ещё не раз пригодиться.

    Данная таблица включает в себя десятичные кратные и дробные (дольные) приставки. Международная система единиц, которая носит сокращённое название СИ, включает шесть кратных (дека, гекто, кило, мега, гига, тера) и восемь дольных приставок (деци, санти, милли, микро, нано, пико, фемто, атто). Многие из этих приставок давно используются в электронике.

    Множитель Приставка
    Наименование Сокращённое обозначение
    русское международное
    1000 000 000 000 = 1012 Тера Т T
    1000 000 000 = 109 Гига Г G
    1000 000 = 106 Мега М M
    1000 = 103 кило к k
    100 = 102 Гекто г h
    10 = 101 дека да da
    0,1 = 10-1 деци д d
    0,01 = 10-2 санти с c
    0,001 = 10-3 милли м m
    0,000 001 = 10-6 микро мк μ
    0,000 000 001 = 10-9 нано н n
    0,000 000 000 001 = 10-12 пико п p
    0,000 000 000 000 001 = 10-15 фемто ф f
    0,000 000 000 000 000 001 = 10-18 атто а a

    Как пользоваться таблицей?

    Как видим из таблицы, разница между многими приставками составляет ровно 1000. Так, например, такое правило действует между кратными величинами, начиная с приставки кило-.

    • Кило  — 1000
    • Мега  — 1 000 000
    • Гига – 1 000 000 000
    • Тера – 1 000 000 000 000

    Так, если рядом с обозначением резистора написано 1 Мом (1 Мегаом), то его сопротивление составит – 1 000 000 (1 миллион) Ом. Если же имеется резистор с номинальным сопротивлением 1 кОм (1 килоом), то в Омах это будет  1000 (1 тысяча) Ом.

    Для дольных или по-другому дробных величин ситуация похожа, только происходит не увеличение численного значения, а его уменьшение.

    Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах, нужно запомнить одно простое правило. Нужно понимать, что милли, микро, нано и пико – все они отличаются ровно на 1000.

    То есть если вам говорят 47 микрофарад, то это значит, что в нанофарадах это будет в 1000 раз больше – 47 000 нанофарад. В пикофарадах это уже будет ещё на 1000 раз больше – 47 000 000 пикофарад.

    Как видим, разница между 1 микрофарадой и 1 пикофарадой составляет 1 000 000 раз.

    Также на практике иногда требуется знать значение в микрофарадах, а значение ёмкости указано в нанофарадах. Так если ёмкость конденсатора 1 нанофарада, то в микрофарадах это будет 0,001 мкф. Если ёмкость 0,01 мкф., то в пикофарадах это будет 10 000 пФ, а в нанофарадах, соответственно, 10 нФ.

    Приставки, обозначающие размерность величины служат для сокращённой записи. Согласитесь проще написать 1мА, чем 0,001 Ампер или, например, 400 мкГн, чем 0,0004 Генри.

    В показанной ранее таблице также есть сокращённое обозначение приставки. Так, чтобы не писать Мега, пишут только букву М. За приставкой обычно следует сокращённое обозначение электрической величины.

    Например, слово Ампер не пишут, а указывают только букву А. Также поступают при сокращении записи единицы измерения ёмкости Фарада. В этом случае пишется только буква Ф.

    Наравне с сокращённой записью на русском языке, которая часто используется в старой радиоэлектронной литературе, существует и международная сокращённая запись приставок. Она также указана в таблице.

    Главная » Радиоэлектроника для начинающих » Текущая страница

    Также Вам будет интересно узнать:

    Источник: https://go-radio.ru/cokrasheniya.html

    Фарад

    Фара́д (русское обозначение: Ф; международное обозначение: F; прежнее название — фара́да) — единица измерения электрической ёмкости в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея[1]. 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

    1 Ф = 1 Кл/1 В.

    Через основные единицы системы СИ фарад выражается следующим образом:

    Ф = А2·с4·кг−1·м−2.

    В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «фарад» пишется со строчной буквы, а её обозначение — с заглавной (Ф).

    Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада.

    Например, обозначение единицы измерения абсолютной диэлектрической проницаемости «фарад на метр» записывается как Ф/м.

    В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом[2].

    Фарад — очень большая ёмкость для уединённого проводника: ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца (ёмкость же шара размером с Землю, используемого как уединённый проводник, составляла бы около 710 микрофарад).

    Ионистор со взаимной ёмкостью в 1 фарад.

    В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов.

    Промышленные конденсаторы имеют номиналы, измеряемые в микро-, нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т. н.

    ионисторов (супер-конденсаторов с двойным электрическим слоем) может достигать многих килофарад.

    Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

    • Фарад может быть выражен через основные единицы системы СИ как:
    • с4⋅А2⋅м−2⋅кг−1.
    • Таким образом, его значение равно:

    Ф = Кл·В−1 = А·с·В−1 = Дж·В−2 = Вт·с·В−2 = Н·м·В−2 = Кл2·Дж−1 = Кл2·Н−1·м−1 = с2·Кл2·кг−1·м−2 = с4·А2·кг−1·м−2 = с·Ом−1 = Ом−1·Гц−1 = с2·Гн−1,

    где Ф — фарад, А — ампер, В — вольт, Кл — кулон, Дж − джоуль, м — метр, Н — ньютон, с — секунда, Вт — ватт, кг — килограмм, Ом — ом, Гц — герц, Гн — генри.

    Образуются с помощью стандартных приставок СИ.

    Кратные

    Дольные

    величина

    название

    обозначение

    величина

    название

    обозначение

    101 Ф

    10−1 Ф

    102 Ф

    10−2 Ф

    103 Ф

    10−3 Ф

    106 Ф

    10−6 Ф

    109 Ф

    10−9 Ф

    1012 Ф

    10−12 Ф

    1015 Ф

    10−15 Ф

    1018 Ф

    10−18 Ф

    1021 Ф

    10−21 Ф

    1024 Ф

    10−24 Ф

    декафарад даФ daF децифарад дФ dF
    гектофарад гФ hF сантифарад сФ cF
    килофарад кФ kF миллифарад мФ mF
    мегафарад МФ MF микрофарад мкФ µF
    гигафарад ГФ GF нанофарад нФ nF
    терафарад ТФ TF пикофарад пФ pF
    петафарад ПФ PF фемтофарад фФ fF
    эксафарад ЭФ EF аттофарад аФ aF
    зеттафарад ЗФ ZF зептофарад зФ zF
    иоттафарад ИФ YF иоктофарад иФ yF
         применять не рекомендуется      не применяются или редко применяются на практике
    • Дольную единицу пикофарад до 1967 года называли микромикрофарада (русское обозначение: мкмкф; международное: µµF)[3].
    • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквами мк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[источник не указан 2428 дней].
    • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

    Источник: https://ruwikiorg.ru/wiki/Farad

    Как работают конденсаторы | HowStuffWorks

    В некотором смысле конденсатор немного похож на батарею. Хотя они работают совершенно по-разному, конденсаторы и аккумуляторы хранят электрическую энергию. Если вы читали «Как работают батареи», то знаете, что у батареи есть две клеммы. Внутри батареи химические реакции производят электроны на одном выводе, а другой вывод поглощает их, когда вы создаете цепь. Конденсатор намного проще, чем батарея, поскольку он не может производить новые электроны — он только хранит их.Конденсатор называется так потому, что он обладает «емкостью» для хранения энергии.

    В этой статье мы точно узнаем, что такое конденсатор, для чего он нужен и как он используется в электронике. Мы также рассмотрим историю конденсатора и то, как несколько человек помогли сформировать его развитие.

    Конденсаторы могут быть изготовлены для любых целей, от самого маленького пластикового конденсатора в вашем калькуляторе до сверхконденсатора, который может питать пригородную шину. Вот некоторые из различных типов конденсаторов и способы их использования.

    • Воздух: часто используется в схемах настройки радио
    • Майлар: чаще всего используется для схем таймера, таких как часы, сигнализация и счетчики
    • Стекло: подходит для высоковольтных приложений
    • Керамика: используется для высокочастотных целей, таких как антенны, X аппараты для лучевой терапии и МРТ
    • Суперконденсатор: питает электрические и гибридные автомобили

    Внутри конденсатора клеммы подключаются к двум металлическим пластинам, разделенным непроводящим веществом, или диэлектрику .Вы можете легко сделать конденсатор из двух кусков алюминиевой фольги и листа бумаги (и нескольких электрических зажимов). Это не будет особенно хороший конденсатор с точки зрения его емкости, но он будет работать.

    Теоретически диэлектриком может быть любое непроводящее вещество. Однако для практического применения используются специальные материалы, которые лучше всего подходят для работы конденсатора. Слюда, керамика, целлюлоза, фарфор, майлар, тефлон и даже воздух — вот некоторые из используемых непроводящих материалов.Диэлектрик определяет, какой это конденсатор и для чего он лучше всего подходит. В зависимости от размера и типа диэлектрика, некоторые конденсаторы лучше подходят для высокочастотных применений, а некоторые — для высоковольтных применений.

    Единица емкости Фарад — PTB.de

    Единица измерения электрической емкости — фарад (сокращенно F), названная в честь английского физика и химика Майкла Фарадея. Емкость C, конденсатора — это отношение заряда Q , хранящегося в конденсаторе, к приложенному постоянному напряжению U :

    .

    В случае переменного тока (ac) емкость определяется переменным током I , который течет, когда переменное напряжение U приложено к импедансу Z конденсатора:

    Z = U / I с Z = 1 / (j ωC ) ⇒ C = I / (j ωU )

    с j в качестве мнимой единицы (j 2 = -1) и ω угловой частотой.

    Следовательно, это справедливо как для постоянного, так и для переменного тока:

    Реализация и распространение фарада осуществляется во всем мире с помощью переменного тока. Следовательно, ниже рассматривается только емкость переменного тока. Часто используемые эталоны емкости представляют собой коммерческие конденсаторы с параллельными пластинами, изготовленные из инвара и термостатированных эталонов из плавленого кварца, поскольку они, среди прочего, имеют очень небольшой коэффициент рассеяния.

    Конденсатор 1 нФ типа «General Radio 1404 A», в учебных целях с вырезанным корпусом, чтобы сделать видимым стопку параллельных пластин конденсатора.


    Реализация модуля емкости на PTB с помощью коаксиальных измерительных мостов

    Модуль емкости реализован на PTB с помощью так называемого квадратурного моста, который связывает калиброванный эталон емкости 10 нФ с известным квантовым датчиком Холла. сопротивление. На следующем рисунке показана схема такого квадратурного моста:

    Схема квадратурного моста.

    Обратите внимание, что один и тот же переменный ток I протекает через оба стандарта.Используя закон Ома I = U / R H для левого плеча моста и I = ωCU для правого плеча моста (что, кстати, является определением сопротивления и емкости соответственно), емкость калибруемого стандарта может быть выражена через известное квантовое сопротивление Холла R H :

    C = (1 + Δ ) / ( ωR H )

    с ω = 2π f угловой частотой и f = 1233 147 Гц частотой, привязанной к стандарту частоты PTB (Отдел 4.4). Δ представляет собой (обычно очень маленькое) относительное отклонение эталона емкости 10 нФ от номинала и определяется по мостовой балансировочной системе, которая для простоты не показана на рисунке выше.

    Важно убедиться, что значение квантового холловского сопротивления на переменном токе согласуется с квантованным значением постоянного тока и, в частности, не отклоняется из-за паразитной диссипации переменного тока. Чтобы избежать таких нежелательных эффектов, PTB разработала специальную технику экранирования.

    Согласно рекомендации CIPM, квантовое сопротивление Холла обозначается как R K-90 , чтобы обеспечить наилучшее возможное согласование с фарадом СИ. Относительная разница между R K-90 и текущим значением SI в R K составляет менее 2 . 10 -8 , что практически не актуально и отпадет с новой СИ.

    Точность квадратурного моста, показанного выше, ограничена неточностью технического происхождения при создании квадратурного напряжения jU .Расширение квадратурного моста до зеркально-симметричного двойного моста позволяет устранить этот эффект и достичь желаемой точности. Действительно, это увеличивает затраты на измерения. В частности, необходимы два квантовых холловских сопротивления переменному току. Они работают в одном криостате со сверхпроводящим соленоидом и снабжены коаксиальными выводами и экранами.


    Схема двойного квадратурного моста.

    Фотография основной части квадратурной бригады.Ширина фото соответствует примерно 2,5 м.

    Таким образом калибруются стандарты емкости 10 нФ. Стандарты емкости с номинальными значениями 10 пФ и 100 пФ (1 пФ = 10 — 12 F) демонстрируют лучшую временную стабильность и транспортабельность. Поэтому они наиболее подходят для среднесрочной консервации как в PTB, так и для ее клиентов. Таким образом, они являются «рабочими лошадками» метрологии емкости. Чтобы откалибровать такой эталон емкости 10 пФ или 100 пФ, последовательность шагов 10: 1 — начиная с уже откалиброванных эталонов 10 нФ — выполняется с помощью коаксиального моста.

    Измерительная цепь от квантового сопротивления Холла до стандарта емкости 10 пФ и стандарта сопротивления постоянному току.


    Таким образом, квантовое сопротивление Холла является фиксированной точкой не только для шкалы сопротивления, но и для шкалы емкости. Это преимущество единообразия системы единиц. Достижимая погрешность для стандарта 10 пФ составляет 1 . 10 -8 (k = 2), что явно меньше, чем погрешность выдающихся в мире артефактов вычисляемой емкости.Причины такой низкой погрешности заключаются не только в особых свойствах квантового сопротивления Холла, но и в специальной методике коаксиальных измерений, которая позволяет проводить очень точные измерения при низком уровне шума.


    Нижний конец коаксиального двойного держателя для двух квантовых холловских сопротивлений GaAs для применения при низких температурах и сильных магнитных полях. Приведенные выше измеренные кривые показывают плато квантового холловского сопротивления.


    Для сохранения при PTB рабочие стандарты 10 пФ и 100 пФ известного дрейфового поведения прослеживаются таким образом до квантового сопротивления Холла примерно два раза в год по мере необходимости.Эти эталоны емкости затем используются в Рабочей группе 2.13 для калибровки эталонов потребителя. Там же построена шкала емкости с большими номинальными значениями до 10 мФ.

    Back to Home AG 2.62

    Таблица преобразования конденсаторов

    »Электроника

    Значения конденсаторов могут быть выражены в мкФ, нФ и пФ, и часто требуется преобразование значений между ними, нФ в мкФ, нФ в пФ и наоборот.


    Руководство по емкости Включает:
    Емкость Формулы конденсатора Емкостное реактивное сопротивление Параллельные и последовательные конденсаторы Диэлектрическая проницаемость и относительная диэлектрическая проницаемость Коэффициент рассеяния, тангенс угла потерь, ESR Таблица преобразования конденсаторов


    Конденсаторы — это очень распространенная форма электронных компонентов, и емкость конденсаторов обычно выражается в микрофарадах, мкФ (иногда мкФ, когда микроконтроллер недоступен), нанофарадах, нФ и пикофарадах, пФ.

    Часто эти множители перекрываются. Например, 0,1 мкФ также можно выразить как 100 нФ, и есть еще много примеров такого рода путаницы в обозначениях.

    Также в некоторых областях использование нанофарад, нФ, менее распространено, и значения выражаются в долях мкФ и большим кратным пикофарадам, пФ. В этих обстоятельствах может потребоваться преобразование в нанофарады, нФ, когда доступны компоненты, отмеченные в нанофарадах.

    Иногда может сбивать с толку, когда на принципиальной схеме или в списке электронных компонентов может указываться значение в пикофарадах, например, а в списках дистрибьютора электронных компонентов в магазине электронных компонентов может упоминаться это в другом.

    Также при проектировании электронной схемы необходимо убедиться, что значения электронных компонентов указаны в текущем кратном десяти. Вылет в десять раз может быть катастрофой!

    Таблица преобразования конденсаторов ниже показывает эквиваленты между & мкФ, нФ и пФ в удобном табличном формате. Часто при покупке у дистрибьютора электронных компонентов или в магазине электронных компонентов в маркировке спецификаций могут использоваться другие обозначения, и может потребоваться их преобразование.

    Значения конденсаторов могут быть в диапазоне 10 9 и даже больше, поскольку в настоящее время используются суперконденсаторы. Чтобы избежать путаницы с большим количеством нулей, прикрепленных к значениям различных конденсаторов, широко используются общие префиксы pico (10 -12 ), nano (10 -9 ) и micro (10 -6 ). При преобразовании между ними иногда полезно иметь таблицу преобразования конденсаторов или таблицу преобразования конденсаторов для различных номиналов конденсаторов.

    Еще одним требованием для преобразования емкости является то, что для некоторых схем маркировки конденсаторов фактическое значение емкости указывается в пикофарадах, а затем требуется преобразование значения в более обычные нанофарады или микрофарады.

    Также другие формы электронных компонентов используют те же формы умножителя. Резисторы, как правило, не подходят, поскольку их значения измеряются в Ом и более высоких кратных, таких как кОм или & МОм, но индуктивности измеряются в Генри, а значения намного меньше.Поэтому милли-Генри и микро-Генри широко используются, и поэтому могут потребоваться аналогичные преобразования.

    Калькулятор преобразования емкости

    Калькулятор преобразования значений емкости, представленный ниже, позволяет легко преобразовывать значения, выраженные в микрофарадах: мкФ, нанофарадах: нФ и пикофарадах: пФ. Просто введите значение и то, в чем оно выражается, и значение будет отображаться в мкФ, нФ и пФ, а также значение в фарадах!

    Калькулятор преобразования емкости

    Преобразовать электростатическую емкость.


    Конденсатор Таблица преобразования

    Диаграмма или таблица, доказывающая простой перевод между микрофарадами, мкФ; нанофарады, нФ, и пикофарады, пФ приведены ниже. Это помогает уменьшить путаницу, которая может возникнуть при переключении между разными множителями значений.


    Таблица преобразования значений емкости конденсатора
    пФ в нФ, мк в нФ и т. Д. .
    микрофарад (мкФ) нанофарад (нФ) пикофарады (пФ)
    0.000001 0,001 1
    0,00001 0,01 10
    0,0001 0,1 100
    0,001 1 1000
    0,01 10 10000
    0,1 100 100000
    1 1000 1000000
    10 10000 10000000
    100 100000 100000000

    Эта таблица преобразования конденсаторов или таблица преобразования конденсаторов позволяет быстро и легко найти различные значения, указанные для конденсаторов, и преобразовать их между пикофарадами, нанофарадами и микрофарадами.

    Популярные преобразования конденсаторов

    Существует несколько популярных способов записи значений конденсаторов. Часто, например, керамический конденсатор может иметь значение 100 нФ. При использовании в цепях с электролитическими конденсаторами часто бывает интересно понять, что это 0,1 мкФ. Эти полезные преобразования могут помочь при проектировании, создании или обслуживании схем.


    Преобразование обычных конденсаторов
    100 пФ = 0,1 нФ
    1000pf = 1 нФ
    100 нФ = 0.1 мкФ

    При проектировании схем или любом использовании конденсаторов часто бывает полезно иметь в виду эти преобразования конденсаторов, поскольку значения переходят от пикофарад к нанофарадам, а затем от нанофарад к микрофарадам.

    Более подробная таблица коэффициентов преобразования для преобразования между различными значениями, нФ в пФ, мкФ в нФ и т. Д. Приведена ниже.

    Таблица коэффициентов преобразования для преобразования между мкФ, нФ и пФ
    Преобразовать Умножить на:
    пФ до нФ 1 x 10 -3
    пФ до мкФ 1 x 10 -6
    нФ до пФ 1 х 10 3
    от нФ до мкФ 1 x 10 -3
    мкФ до пФ 1 х 10 6
    мкФ до нФ 1 х 10 3

    Номенклатура преобразования конденсатора

    Хотя в большинстве современных схем и описаний компонентов используется номенклатура мкФ, нФ и пФ для детализации значений конденсаторов, часто в старых схемах цепей, в описаниях цепей и даже в самих компонентах может использоваться множество нестандартных сокращений, и это не всегда может быть понятно. именно то, что они означают.

    Основные варианты для различных подкратных значений емкости приведены ниже:

    • Микрофарад, мкФ: Значения для конденсаторов большей емкости, таких как электролитические конденсаторы, танталовые конденсаторы и даже некоторых бумажных конденсаторов, измеренные в микрофарадах, могли быть обозначены в мкФ, мфд, МФД, МФ или мкФ. Все они относятся к величине, измеренной в мкФ. Эта терминология обычно связана с электролитическими конденсаторами и танталовыми конденсаторами.
    • Нано-Фарад, нФ: Терминология нФ или нано-Фарад не использовалась широко до стандартизации терминологии, и поэтому у этого подмножителя не было множества сокращений. Термин нанофарад стал гораздо более использоваться в последние годы, хотя в некоторых странах его использование не так широко, поскольку значения выражаются в большом количестве пикофарад, например 1000 пФ на 1 нФ или доли микрофарады, например 0,001 мкФ, опять же для нанофарада.Эта терминология обычно ассоциируется с керамическими конденсаторами, металлизированными пленочными конденсаторами, включая многослойные керамические конденсаторы для поверхностного монтажа, и даже с некоторыми современными конденсаторами из серебряной слюды.
    • Пико-Фарад, пФ: Снова использовались различные сокращения для обозначения значения в пикофарадах, пФ. Используемые термины включали: микроромикрофарады, mmfd, MMFD, uff, мкФ. Все они относятся к значениям в пФ. Значения конденсаторов, измеряемые в пикофарадах, часто используются в радиочастотных, РЧ-цепях и оборудовании.Соответственно, эта терминология используется в основном с керамическими конденсаторами, но также используется для серебряных слюдяных конденсаторов и некоторых пленочных конденсаторов.

    Стандартизация терминологии помогла в преобразовании значений из одного подмножества в другое. Это означает, что здесь значительно меньше места для недоразумений. Проще преобразовать из мкФ в нФ и пФ. Это часто бывает полезно, когда на принципиальной схеме может упоминаться номинал конденсатора, упомянутый одним способом, а в списках дистрибьюторов электронных компонентов — другим.

    Таблица преобразования емкости очень полезна, потому что разные производители электронных компонентов могут маркировать компоненты по-разному, иногда маркируя их как несколько нанофарад, тогда как другие производители могут маркировать свои эквивалентные конденсаторы как доли микрофарад и так далее. Очевидно, что дистрибьюторы электронных компонентов и магазины электронных компонентов будут стремиться использовать номенклатуру производителей.

    Подобным образом на принципиальных схемах компоненты могут быть помечены по-разному, часто для сохранения общности и т. Д.Соответственно, это помогает иметь возможность конвертировать из пикофарад в нанофарады и микрофарады и наоборот. Это может помочь идентифицировать компоненты, отмеченные значениями, выраженными в нанофарадах, когда в спецификации или списке деталей для схемы могут быть значения, выраженные в микрофарадах, мкФ и пикофарадах, пФ.

    Часто бывает полезно иметь возможность использовать калькулятор преобразования емкости, подобный приведенному выше, но часто вы знакомы с преобразованиями, и популярные эквиваленты, такие как 1000 пФ — это нанофарад, а 100 нФ — 0.1 мкФ.

    При использовании электронных компонентов и проектировании электронных схем эти преобразования быстро становятся второй натурой, но даже в этом случае таблицы преобразования емкости и калькуляторы часто могут быть очень полезными. Эти преобразования, очевидно, полезны для конденсаторов, а также других электронных компонентов, таких как катушки индуктивности.

    Дополнительные концепции и руководства по основам электроники:
    Voltage Текущий Власть Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
    Вернуться в меню «Основные понятия электроники».. .

    Что такое емкость? | Fluke

    Емкость — это способность компонента или схемы собирать и накапливать энергию в виде электрического заряда.

    Конденсаторы — это устройства накопления энергии, доступные во многих размерах и формах. Они состоят из двух пластин из проводящего материала (обычно тонкого металла), зажатых между изолятором из керамики, пленки, стекла или других материалов, даже воздуха.

    Изолятор, также известный как диэлектрик , увеличивает зарядную емкость конденсатора.Конденсаторы иногда называют конденсаторами в автомобильной, морской и авиационной промышленности.

    Внутренние пластины подключены к двум внешним клеммам, которые иногда бывают длинными и тонкими и могут напоминать крошечные металлические антенны или ножки. Эти клеммы можно включить в цепь.

    Конденсаторы и батареи накапливают энергию. В то время как батареи выделяют энергию постепенно, конденсаторы разряжают ее быстро.

    Как работает конденсатор?

    Конденсатор собирает энергию (напряжение), когда ток течет по электрической цепи.Обе пластины содержат одинаковые заряды, и когда положительная пластина накапливает заряд, одинаковый заряд стекает с отрицательной пластины.

    Когда цепь отключена, конденсатор сохраняет собранную энергию, хотя обычно происходит небольшая утечка.

    Различные конденсаторы (показаны цветом) в печатной плате.

    Емкость выражается как отношение электрического заряда на каждом проводе к разности потенциалов (т. Е. Напряжению) между ними.

    Емкость конденсатора измеряется в фарадах (F), единицах, названных в честь английского физика Майкла Фарадея (1791–1867).

    Фарад — это большая емкость. Большинство бытовых электрических устройств содержат конденсаторы, которые производят только доли фарада, часто тысячные доли фарада (или микрофарады, мкФ) или даже пикофарады (триллионные доли, пФ).

    Суперконденсаторы, тем временем, могут накапливать очень большие электрические заряды в тысячи фарад.

    Как увеличить емкость

    Емкость можно увеличить, если:

    • Пластины (проводники) конденсатора расположены ближе друг к другу.
    • Пластины большего размера обеспечивают большую площадь поверхности.
    • Диэлектрик — лучший изолятор для данной области применения.
    Конденсаторы бывают разных форм.

    В электрических цепях конденсаторы часто используются для блокировки постоянного тока (dc), позволяя протекать переменному току (ac).

    Некоторые цифровые мультиметры предлагают функцию измерения емкости, поэтому технические специалисты могут:

    • Определить неизвестный или немаркированный конденсатор.
    • Обнаружение обрыва или короткого замыкания конденсаторов.
    • Измерьте конденсаторы напрямую и отобразите их значение.

    Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

    Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке Конвертер КПД, расхода топлива и экономичности (на массу) Конвертер Удельная энергия, теплота сгорания (на единицу объема) Конвертер Температура In Конвертер термического расширенияКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер объёмного расходаКонвертер массового расходаКонвертер массового расходаПреобразователь массового потока Конвертер плотности молярной концентрацииПреобразователь плотности КонвертерПреобразователь проницаемости, проницаемости, паропроницаемости Конвертер влажности и скорости передачи паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркости ) в увеличение (X) преобразователь ic Charge ConverterЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости в дБПреобразователь электрической проводимости Ватты и другие единицы измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Конвертер молярной массы Периодическая таблица

    Экран сенсора этого планшета изготовлен с использованием технологии проекции емкости

    Обзор

    Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

    Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

    C = Q / ∆φ

    Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

    Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

    Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

    Поскольку один фарад является такой большой величиной, используются меньшие единицы, такие как микрофарад (мкФ), что соответствует одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

    В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — она ​​использует сантиметры, граммы и секунды в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

    Использование емкости

    Конденсаторы — электронные компоненты для накопления электрических зарядов

    Электронные символы

    Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

    Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

    Немного истории

    Ученые смогли изготавливать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд порядка одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули от ужаса, почувствовав толчок.

    «Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий основал Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

    Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

    Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

    Примеры конденсаторов

    Конденсаторы электролитические в блоке питания.

    Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

    Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

    Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении схем обычно используются конденсаторы со значением номинального напряжения, которое вдвое превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.

    Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

    Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

    В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

    Маркировка конденсаторов

    Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

    Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

    Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

    Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

    Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

    Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

    3-секционный воздушный конденсатор переменной емкости

    переменный конденсатор: емкость этих конденсаторов может быть изменена механически, путем регулирования электрического напряжения или изменения температуры.

    Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

    Есть и другие типы конденсаторов.

    Суперконденсаторы

    Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды пористые, угольные. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

    Суперконденсаторы используются в электрических цепях как источник электрической энергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Основным недостатком использования суперконденсаторов является то, что они производят меньшее количество удельной энергии (энергии на единицу веса), а также имеют низкое номинальное напряжение и большой саморазряд.

    В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

    Электромобиль A2B производства Университета Торонто. Общий вид

    В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

    Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

    Электромобиль A2B производства Университета Торонто. Под капотом

    В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

    Поверхностные емкостные сенсорные экраны

    Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

    Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

    Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение до 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий уровень прозрачности — до 90%. Благодаря своим преимуществам, емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

    Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

    Проекционные емкостные сенсорные экраны

    Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

    Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

    Эту статью написали Сергей Акишкин, Татьяна Кондратьева

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Перевести фарад [F] в кулон на вольт [C / V] • Конвертер емкости • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при приготовлении пищи Конвертер объема и общих измерений при приготовлении пищиПреобразователь температурыДавление, напряжение , Конвертер модуля упругости ЮнгаПреобразователь энергии и рабочего времениПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращения Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер крутящего момента Конвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты сгорания Конвертер температур (на объем) Конвертер температурного интервалаКонвертер коэффициента теплового расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициентов теплопередачиКонвертер коэффициентов объемного расходаКонвертер массового расходаМолярный преобразователь скорости потока Конвертер массового потока Конвертер массового расхода ) Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаПреобразователь уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптическая сила pter) в увеличение (X) преобразовательПреобразователь электрического зарядаПреобразователь линейной плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимости уровней в дБмВт, дБВ, ваттах и ​​других единицах измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Конвертер молярной массы Периодическая таблица

    Экран сенсора этого планшета изготовлен с использованием технологии проекции емкости

    Обзор

    Измерение емкости конденсатора с номинальной емкостью 10 мкФ , используя осциллограф мультиметра.

    Емкость — это физическая величина, которая представляет способность проводника накапливать заряд.Он находится путем деления величины электрического заряда на разность потенциалов между проводниками:

    C = Q / ∆φ

    Здесь Q — электрический заряд, который измеряется в кулонах (Кл), а ∆φ — разность потенциалов, измеряемая в вольтах (В).

    Емкость измеряется в фарадах (Ф) в СИ. Этот блок назван в честь британского физика Майкла Фарадея.

    Один фарад представляет собой чрезвычайно большую емкость для изолированного проводника.Например, изолированный металлический шар с радиусом в 13 раз большим, чем у Солнца, будет иметь емкость в одну фарад, в то время как емкость металлического шара с радиусом Земли будет около 710 микрофарад (мкФ).

    Поскольку один фарад является такой большой величиной, используются меньшие единицы, такие как микрофарад (мкФ), что соответствует одной миллионной фарада, нанофарад (нФ), равный одной миллиардной фарада, и пикофарад (пФ). , что составляет одну триллионную фарада.

    В расширенной CGS для электромагнитных устройств основная единица емкости описывается в сантиметрах (см).Один сантиметр электромагнитной емкости представляет собой емкость шара в вакууме с радиусом 1 см. Система CGS расшифровывается как система сантиметр-грамм-секунда — она ​​использует сантиметры, граммы и секунды в качестве основных единиц длины, массы и времени. Расширения CGS также устанавливают одну или несколько констант на 1, что позволяет упростить определенные формулы и вычисления.

    Использование емкости

    Конденсаторы — электронные компоненты для накопления электрических зарядов

    Электронные символы

    Емкость — это величина, имеющая значение не только для электрических проводников, но и для конденсаторов (первоначально называемых конденсаторами).Конденсаторы состоят из двух проводников, разделенных диэлектриком или вакуумом. Самый простой вариант конденсатора имеет две пластины, которые действуют как электроды. Конденсатор (от латинского condender — конденсировать) — это двухслойный электронный компонент, используемый для хранения электрического заряда и энергии электромагнитного поля. Самый простой конденсатор состоит из двух электрических проводников, между которыми находится диэлектрик. Энтузиасты радиоэлектроники, как известно, делают подстроечные конденсаторы для своих схем с эмалированными проводами разного диаметра.Более тонкая проволока наматывается на более толстую. Схема RLC настраивается на желаемую частоту путем изменения количества витков провода. На изображении есть несколько примеров того, как конденсатор может быть представлен на принципиальной схеме.

    Параллельная RLC-цепь: резистор, катушка индуктивности и конденсатор

    Немного истории

    Ученые смогли изготавливать конденсаторы еще 275 лет назад. В 1745 году в Лейдене немецкий физик Эвальд Георг фон Клейст и физик из Нидерландов Питер ван Мушенбрук создали первое конденсаторное устройство, получившее название «лейденская банка».Стенки сосуда служили диэлектриком, а вода в кувшине и рука экспериментатора — проводящими пластинами. В такой банке может накапливаться заряд порядка одного микрокулона (мкКл). В то время были популярны эксперименты и демонстрации с лейденскими кувшинами. В них банку заряжали статическим электричеством за счет трения. Затем участник эксперимента касался банки и подвергался поражению электрическим током. Однажды 700 монахов в Париже провели Лейденский эксперимент. Они взялись за руки, и один из них прикоснулся к банке.В этот момент все 700 человек воскликнули от ужаса, почувствовав толчок.

    «Лейденская банка» попала в Россию благодаря русскому царю Петру Великому. Он встретился с Питером ван Мушенбруком во время своего путешествия по Европе и познакомился с его творчеством. Когда Петр Великий основал Российскую академию наук, он поручил Мушенбруку изготовить для Академии различное оборудование.

    Со временем конденсаторы были усовершенствованы, и их размер уменьшался по мере увеличения емкости.Сегодня конденсаторы широко используются в электронике. Например, конденсатор и катушка индуктивности образуют цепь резистора, катушки индуктивности и конденсатора, также известную как цепь RLC, LCR или CRL. Эта схема используется для установки частоты приема на радио.

    Существует несколько типов конденсаторов, различающихся постоянной или переменной емкостью, а также типом используемого диэлектрического материала.

    Примеры конденсаторов

    Конденсаторы электролитические в блоке питания.

    Сегодня существует множество различных типов конденсаторов для различных целей, но их основная классификация основана на их емкости и номинальном напряжении.

    Обычно емкость конденсаторов находится в диапазоне от нескольких пикофарад до нескольких сотен микрофарад. Исключением являются суперконденсаторы, потому что их емкость формируется иначе, чем у других конденсаторов — это, по сути, двухслойная емкость. Это похоже на принцип действия электрохимических ячеек.Суперконденсаторы, построенные из углеродных нанотрубок, имеют повышенную емкость из-за большей поверхности электродов. Емкость суперконденсаторов составляет десятки фарад, и иногда они могут заменить электрохимические ячейки в качестве источника электрического тока.

    Вторым по важности свойством конденсатора является его номинальное напряжение . Превышение этого значения может сделать конденсатор непригодным для использования. Вот почему при построении схем обычно используются конденсаторы со значением номинального напряжения, которое вдвое превышает напряжение, приложенное к ним в цепи.Таким образом, даже если напряжение в цепи немного превышает норму, с конденсатором все будет в порядке, если увеличение не станет вдвое больше нормы.

    Конденсаторы могут быть объединены в батареи для увеличения общего номинального напряжения или емкости системы. При последовательном соединении двух конденсаторов одного типа номинальное напряжение увеличивается вдвое, а общая емкость уменьшается вдвое. При параллельном подключении конденсаторов общая емкость удваивается, а номинальное напряжение остается прежним.

    Третьим по важности свойством конденсаторов является их температурный коэффициент емкости . Он отражает взаимосвязь между емкостью и температурой.

    В зависимости от назначения конденсаторы подразделяются на конденсаторы общего назначения, которые не должны соответствовать требованиям высокого уровня, и специальные конденсаторы. К последней группе относятся высоковольтные конденсаторы, прецизионные конденсаторы и конденсаторы с различным температурным коэффициентом емкости.

    Маркировка конденсаторов

    Как и резисторы, конденсаторы маркируются в соответствии с их емкостью и другими свойствами. Маркировка может включать информацию о номинальной емкости, степени отклонения от номинального значения и номинальном напряжении. Малогабаритные конденсаторы маркируются трех- или четырехзначным или буквенно-цифровым кодом, а также могут иметь цветовую маркировку.

    Таблицы с кодами и соответствующими им значениями номинального напряжения, номинальной емкости и температурного коэффициента емкости доступны в Интернете, но самый надежный способ проверить емкость и выяснить, правильно ли работает конденсатор, — это удалить конденсатор из цепи. и производить измерения с помощью мультиметра.

    Электролитический конденсатор в разобранном виде. Он изготовлен из двух алюминиевых фольг. Один из них покрыт изолирующим оксидным слоем и действует как анод. Бумага, пропитанная электролитом, вместе с другой фольгой действует как катод. Алюминиевая фольга протравливается для увеличения площади поверхности.

    Предупреждение: конденсаторы могут хранить очень большой заряд при очень высоком напряжении. Во избежание поражения электрическим током перед выполнением измерений необходимо принять меры предосторожности.В частности, важно разряжать конденсаторы путем короткого замыкания их выводов с помощью провода, изолированного из высокопрочного материала. В этой ситуации хорошо подойдут обычные провода измерительного прибора.

    Электролитические конденсаторы: эти конденсаторы имеют большой объемный КПД. Это означает, что они имеют большую емкость для данной единицы веса конденсатора. Одна из пластин такого конденсатора обычно представляет собой алюминиевую ленту, покрытую тонким слоем оксида алюминия.Электролитическая жидкость действует как вторая пластина. Эта жидкость имеет электрическую полярность, поэтому крайне важно обеспечить правильное добавление такого конденсатора в схему в соответствии с его полярностью.

    Полимерные конденсаторы: В конденсаторах этих типов в качестве второй пластины используется полупроводник или органический полимер, проводящий электричество, а не электролитическая жидкость. Их анод обычно изготавливается из металла, такого как алюминий или тантал.

    3-секционный воздушный конденсатор переменной емкости

    переменный конденсатор: емкость этих конденсаторов может быть изменена механически, путем регулирования электрического напряжения или изменения температуры.

    Пленочные конденсаторы: их емкость может составлять от 5 пФ до 100 мкФ.

    Есть и другие типы конденсаторов.

    Суперконденсаторы

    Суперконденсаторы в наши дни становятся популярными. Суперконденсатор — это гибрид конденсатора и химического источника питания. Заряд сохраняется на границе, где встречаются две среды, электрод и электролит. Первый электрический компонент, который был предшественником суперконденсатора, был запатентован в 1957 году.Это был конденсатор с двойным электрическим слоем и пористым материалом, который помог увеличить емкость из-за увеличенной площади поверхности. Этот подход известен теперь как двухслойная емкость. Электроды пористые, угольные. С тех пор конструкция постоянно улучшалась, и первые суперконденсаторы появились на рынке в начале 1980-х годов.

    Суперконденсаторы используются в электрических цепях как источник электрической энергии. У них много преимуществ перед традиционными батареями, включая их долговечность, небольшой вес и быструю зарядку.Вполне вероятно, что благодаря этим преимуществам суперконденсаторы в будущем заменят батареи. Основным недостатком использования суперконденсаторов является то, что они производят меньшее количество удельной энергии (энергии на единицу веса), а также имеют низкое номинальное напряжение и большой саморазряд.

    В гонках Формулы 1 суперконденсаторы используются в системах рекуперации энергии. Энергия вырабатывается, когда автомобиль замедляется. Он хранится в маховике, батарее или суперконденсаторах для дальнейшего использования.

    Электромобиль A2B производства Университета Торонто. Общий вид

    В бытовой электронике суперконденсаторы используются для обеспечения стабильного электрического тока или в качестве резервного источника питания. Они часто обеспечивают питание во время пиков потребления энергии в устройствах, которые используют питание от батареи и имеют переменную потребность в электроэнергии, например MP3-плееры, фонарики, автоматические счетчики электроэнергии и другие устройства.

    Суперконденсаторы также используются в общественном транспорте, особенно в троллейбусах, поскольку они обеспечивают более высокую маневренность и автономное движение при проблемах с внешним источником питания.Суперконденсаторы также используются в некоторых автобусах и электромобилях.

    Электромобиль A2B производства Университета Торонто. Под капотом

    В наши дни многие компании производят электромобили, в том числе General Motors, Nissan, Tesla Motors и Toronto Electric. Исследовательская группа Университета Торонто совместно с компанией Toronto Electric, занимающейся дистрибьюцией электродвигателей, разработала канадскую модель электромобиля A2B. В нем используются как химические источники энергии, так и суперконденсаторы — такой способ хранения энергии называется гибридным накопителем электроэнергии.Двигатели этого электромобиля питаются от аккумуляторов массой 380 кг. Солнечные батареи также используются за дополнительную плату — они устанавливаются на крыше автомобиля.

    Емкостные сенсорные экраны

    В современных устройствах все чаще используются сенсорные экраны, которые управляют устройствами с помощью сенсорных панелей или экранов. Существуют различные типы сенсорных экранов, включая емкостные и резистивные, а также многие другие. Некоторые могут реагировать только на одно прикосновение, а другие реагируют на несколько прикосновений.Принцип работы емкостных экранов основан на том, что большое тело проводит электричество. Это большое тело в нашем случае и есть человеческое тело.

    Поверхностные емкостные сенсорные экраны

    Сенсорный экран для iPhone выполнен по технологии проецируемой емкости.

    Поверхностный емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. Как правило, этот материал отличается высокой прозрачностью и низким поверхностным сопротивлением. Часто используется сплав оксида индия и оксида олова.Электроды в углах экрана подают на резистивный материал низкое колеблющееся напряжение. Когда палец касается этого экрана, возникает небольшая утечка электрического заряда. Эта утечка обнаруживается датчиками в четырех углах, и информация отправляется контроллеру, который определяет координаты касания.

    Преимущество этих экранов в их долговечности. Они могут выдерживать прикосновения с частотой до одного раза в секунду в течение до 6,5 лет. Это составляет около 200 миллионов касаний.Эти экраны имеют высокий уровень прозрачности — до 90%. Благодаря своим преимуществам, емкостные сенсорные экраны заменяют резистивные сенсорные экраны на рынке с 2009 года.

    Недостатки емкостных экранов заключаются в том, что они плохо работают при минусовых температурах и их трудно использовать в перчатках, потому что перчатки действовать как изолятор. Сенсорный экран чувствителен к воздействию элементов, поэтому, если он расположен на внешней панели устройства, он используется только в устройствах, защищающих экран от воздействия.

    Проекционные емкостные сенсорные экраны

    Помимо поверхностных емкостных экранов, существуют также проекционные емкостные сенсорные экраны. Они отличаются тем, что на внутренней стороне экрана находится сетка электродов. Когда пользователь касается электрода, тело и электрод работают вместе как конденсатор. Благодаря сетке электродов легко получить координаты той области экрана, к которой прикоснулись. Этот тип экрана реагирует на прикосновения даже в тонких перчатках.

    Проекционные емкостные сенсорные экраны также обладают высокой прозрачностью до 90%. Они прочные и долговечные, что делает их популярными не только в личных электронных устройствах, но и в устройствах, предназначенных для общественного использования, таких как торговые автоматы, электронные платежные системы и другие.

    Эту статью написали Сергей Акишкин, Татьяна Кондратьева

    У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    фарад

    Фарад не следует путать с Фарадеем, единицей электрического заряда, которую теперь заменяет кулон. фарад (символ: F) — это единица измерения емкости в системе СИ. Он назван в честь британского физика Майкла Фарадея.

    Рекомендуемые дополнительные знания

    Определение

    Фарад определяется как величина емкости, при которой разность потенциалов в один вольт вызывает статический заряд в один кулон.Он имеет базовое представление в системе СИ: s 4 · A 2 · m -2 · kg -1 . Поскольку ампер — это скорость электрического потока (тока) в один кулон в секунду, альтернативное определение заключается в том, что фарад — это величина емкости, которая требует одной секунды для потока заряда в один ампер, чтобы изменить напряжение на один вольт. Далее следуют равенства:

    Пояснение

    Поскольку фарад — это очень большая единица по сравнению с типичными требованиями к электронным устройствам, значения конденсаторов обычно находятся в диапазоне микрофарад (мкФ), нанофарад (нФ) или пикофарад (пФ).Пикофарад иногда комично называют «затяжкой», например, «конденсатором на десять затяжек». Микрофарад (мкФ) в старых текстах — это то же самое, что пикофарад. Миллифарад на практике используется редко, поэтому емкость 4,7 × 10 –3 Ф, например, обычно записывается как 4700 мкФ. Использование в Северной Америке также позволяет избежать нанофарад. Емкость 1 × 10 −9 Ф часто обозначается как 1000 пФ. Емкость 1 × 10 -7 Ф часто обозначается как 0.1 мкФ. Очень маленькие значения емкости, такие как используемые в интегральных схемах, также могут быть выражены в фемтофарадах, один фемтофарад равен 1 × 10 −15 F. Новая технология, называемая суперконденсаторами, предлагает устройства с диапазоном до килофарадов.

    Фарад не следует путать с фарадеем, старой единицей заряда, которую в настоящее время заменяет кулон.

    Величина, обратная емкости, называется электрической упругостью, единицей измерения которой (нестандартной, не в системе СИ) является дарф.

    Конденсатор состоит из двух проводящих поверхностей, часто называемых пластинами, разделенных изолирующим слоем, обычно называемым диэлектриком. Первоначальным конденсатором была лейденская банка, разработанная в 18 веке. Накопление заряда на пластинах приводит к появлению емкости. Современные конденсаторы конструируются с использованием ряда технологий производства и материалов, чтобы обеспечить необычайно широкий диапазон значений емкости, используемых в практических электронных приложениях, от фемтофарад до фарад и способности выдерживать напряжение от нескольких вольт до нескольких киловольт.

    Один пикофарад — это примерно наименьшее значение емкости конденсатора, доступного для общего использования в электронике, поскольку в конденсаторах меньшего размера будут преобладать паразитные емкости (паразитная емкость) других компонентов, проводки или печатных плат. Когда требуется значение емкости 1 пФ или ниже, инженеры иногда создают свои собственные конденсаторы, скручивая вместе два коротких отрезка изолированного провода.

Добавить комментарий

Ваш адрес email не будет опубликован.