Разное

Как из 12 вольт сделать 36 вольт: Как из 36 вольт сделать 12 вольт

Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?

 Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.  Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт.

То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт. Итак, начнем.

Как из 12 вольт сделать 5 вольт с помощью резисторов

Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.
 Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать.

I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
 Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
 Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

Как из 12 вольт сделать 5 вольт с помощью транзистора

 Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей. Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.  Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

 Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима. Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

Как из 12 вольт сделать 5 вольт с помощью микросхемы

 На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство. Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

 Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

Вот так она выглядит «вживую».

Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

Подводя итог о преобразователе напряжения с 12 на 5 вольт

 Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».

 Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
 Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
 Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

Как повысить напряжение постоянного и переменного тока

Чтобы питать электроприборы, нужно обеспечить номинальные значения параметров электропитания, заявленные в их документации. Безусловно большинство современных электроприборов работают от сети переменного тока 220 Вольт, но бывает так, что нужно обеспечить питание приборов для других стран, где напряжение другое или запитать что-нибудь от бортовой сети автомобиля. В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и что для этого нужно.

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – низкое напряжение в электросети, особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, как выбрать стабилизатор напряжения для дома, мы рассказали в статье, на которую сослались.

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью дросселя, полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта. Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора.

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

В заключении хотелось бы напомнить о технике безопасности. При подключении трансформаторов, автотрансформаторов, а также работе с инверторами и умножителями будьте аккуратны. Не касайтесь токоведущихчастей голыми руками. Подключения следует выполнять при отключенном питании от устройства, а также избегать их работы во влажных помещениях с возможностью попадания воды или брызг. Также не превышайте заявленный производителем ток трансформатора, преобразователя или блока питания, если не хотите, чтобы он у вас сгорел. Надеемся, предоставленные советы помогут вам повысить напряжение до нужного значения! Если возникнут вопросы, задавайте их в комментариях под статьей!

Наверняка вы не знаете:

36 Вольт в гараже

На чтение 18 мин. Просмотров 25 Обновлено

Электроэнергия в гараже – необходимое мероприятие. Она, как минимум, требуется для зарядки аккумулятора.

Кроме того, приходится точить инструменты, сверлить, включать паяльник, осветительные приборы.

Однако присутствие ГСМ, и особенно бензина, предъявляет к электропроводки в гараже особые требования. Сырость и контакт с землей делают проводку опасной в отношении электротравм.

Поэтому, перед тем, как получить гараж с электричеством, следует изучить основные требования безопасности, а также технологические приемы электромонтажных работ, нарушение которых также очень плохо влияет на безопасность.

Проводка в гараже: требования правил

Не делая подробных ссылок на нормы электроснабжения гаража СНИП и ПУЭ (правила устройства электроустановок), и прочие правила, что сделало бы статью громоздкой и трудночитаемой, все же необходимо выписать саму суть.

Если гараж находится в кооперативном владении, то потребуется получить разрешение для его электрификации. Узнать подробности можно у администрации кооператива.

Для подключения к трехфазной сети 0.4 кВ (380 В) необходимо обратиться в местное предприятие электроснабжения. Если все делается по правилам, то они же составят проект по требованиям заказчика. (На самом деле такой проект возникает как согласование пожеланий заказчика с возможностями и ограничениями правил.)

Можно сделать своими руками монтаж электропроводки в гараже, а также выполнить все монтажные работы. Но это только тогда когда речь идет об однофазной сети 220 В. Для подведения трехфазной сети потребуется разрешение. А монтаж до отдельного счетчика будет делать уполномоченная организация (местный электроснаб).

В случае сети 220 В позаботьтесь о счетчике, рассчитанном на ток в 50 Ампер, чтобы в случае необходимости был запас по току нагрузки. Разумеется, кабели от ввода должны этот ток обеспечивать. Эта работа также делается специалистами при контроле энергонадзора.

Если ваш счетчик уже такой ток обеспечивает (видно на самом счетчике), то можно делать подключение к гаражу, по воздуху, или под землей.

Как сделать проводку в гараже своими руками — фото:

Как провести электропроводку в гараже? Сначала обсудим то, что можно делать самостоятельно, своими силами. Из дома можно провести электричество в гараже по воздуху или под землей. Воздушную линию делают кабелем и подвешивают на стальной несущей проволоке диаметром 3 мм.

Линию под землей тянут в гофрированной трубе из пластика, в траншее глубиной 80 см, на подушке из песка, толщиной 10 см. Эта линия подключается к домашнему счетчику и является, таким образом, частью квартирной проводки, в качестве отдельной линии, также защищенной автоматом.

В самом помещении устанавливается сделанный своими руками электрический щиток в гараж для дальнейшего распределения электроэнергии (схему электрощитка для гаража смотрите ниже). И этот электрический щиток для гаража начинается с главного автомата, такого же, как и в квартире. О выборе номинального тока для них скажем ниже.

Схема распределительного электрощитка для гаража своими руками:

Схемы и расположение потребителей

Как провести проводку в гараже своими руками? Перед началом работ нужно подобрать схему проводки в гараже своими руками. Схемы электропроводки в гараже бывают разными, в зависимости то того, какая информация требуется тому, кто их смотрит. В электрической технике различают принципиальные схемы и схемы расположения.

Первые должны детально описывать всю электрическую цепь, а вторые – расположение потребителей, с указанием расстояния или так, чтобы можно было ориентироваться по масштабу чертежа. Начнем с принципиальной схемы подключения проводки в гараж, которая требуется в соответствии с последней версией ПУЭ.

Однофазная принципиальная схема электроснабжения гаража показана на рисунке ниже. Для удобства на схеме проводки в гараже использована реальная расцветка проводов (как в обычных кабелях).

Разводка электропроводки в гараже своими руками — схема, фото:

Фазный проводник сети находится под опасным напряжением относительно нейтрали и земли, так как нейтраль обычно заземляется. Однако, для работы устройства защитного отключения (УЗО) необходима защитная земля (PE, protection earth).

Принцип работы УЗО состоит в использовании дифференциального трансформатора, который складывает входящий (по фазному проводу) и уходящий (по проводу нейтрали) токи. Если изоляция потребителя повреждена и есть замыкание на корпус, то сумма токов фазного провода и нейтрали не равна нулю. А разницу дает как раз ток утечки на землю.

Возможно, этот ток течет по телу человека! Смертельный ток около 100 мА. А УЗО, показанное на схеме, настроено на ток 5 мА. Таким образом, человек будет защищен, ибо устройство сработает за миллисекунды и разомкнет цепь.

Но это работает только в том случае, когда ток утечки течет помимо дифференциального трансформатора УЗО, а именно в отдельной линии заземления!

Главный автомат обесточивает нашу маленькую сеть на схеме при коротких замыканиях на общей линии (магнитная защита) или в случае большой суммарной перегрузки всех линий (тепловая защита). Также он используется при ремонтах.

Для того, чтобы обеспечить независимость разных потребителей, используется несколько линий, питающихся от одной или нескольких групп. Обычно в частном гараже, как и в квартире, вполне достаточно одной группы. А каждая группа питается от своего автомата в цепи фазы. Это очень удобно при ремонтах.

Автоматы (автоматические выключатели) защищают свои цепи от перегрузок по току и от коротких замыканий. Следует помнить, что УЗО защищает цепи только от токов утечки! От перегрузки по току она цепь не защищает, это делает автоматический выключатель.

Шины, расположенные в щитках, выполняются в виде полос или брусков из медных или латунных сплавов и снабжены отверстиями для проводов, которые затягиваются винтами. Следует сказать, что современная номенклатура электротехнических изделий очень удобна для монтажных работ, если использовать ее грамотно.

Схема трехфазной сети отличается от однофазной только двумя дополнительными фазами и установкой трехфазных (строенных) автоматов и УЗО. Отдельные фазы этой сети разводятся как линии напряжения 220 В совместно с нейтралью. Между любыми двумя фазами напряжение равно 380 В, а фазовый угол в равномерно нагруженной сети равен 120 градусов. При этом ток в нейтрали равен нулю.

Электричество в гараже своими руками — схема расположения показана на следующем рисунке:

На таких схемах электрики в гараже не обязательно выполнять требования для чертежей по принятым правилам, так как мы делаем их для себя. Главное – это ясность всех обозначений. Вертикальные участки проводки отмечены плюсами с указанием высоты. Это даст возможность легко посчитать длину линий.

На схеме подключения электропроводки в гараже обозначаются условными обозначениями розетки и светильники. Можно добавить выключатели. Все добавляется по месту расположения. Мы еще поработаем над этим документом чуть ниже, когда будем выбирать материалы.

Выбор проводов и кабелей по мощности нагрузок

Здесь можно руководствоваться такой таблицей:

Таблица составлена для напряжения 230 В (новый стандарт вместо 220). Теперь мы можем выбрать сечения кабелей для гаража на предыдущем рисунке. Предположим, что все светильники под потолком на 80 Вт, светильники на 36 В в яме по 100 Вт и розетки для ямы нам понадобятся для электрооборудования мощностью до 5 кВт.

Линия потолочных светильников потребляет в сумме 240 Вт, а для ямных светильников мы не можем использовать таблицу, так как напряжение трансформатора 36 В. Кроме того, в яме есть розетка под электроинструмент на 36 В. Поэтому мы исходим из максимальной мощности трансформатора, пусть она равна 500 Вт.

Провод от трансформатора лучше вести медный, проводка закрытого типа – часть ее проходит по трубам в бетонном полу гаража. Поэтому нам подойдет кабель с жилой сечения 4.5 мм.кв, “четыре с половиной квадрата” на жаргоне электриков. Для ямных розеток мы тоже возьмем медный провод для закрытой проводки, это потребует, согласно таблице, 5.5 мм.кв.

На самом деле эти скрупулезные расчеты вовсе не пустяки, вы поймете это, как только окажетесь в магазине и начнете смотреть на ценники медных кабелей.

Итак, нам понадобится 8 м кабеля 4.5 мм.кв и 7 м кабеля 5.5 мм.кв. А также 9 м алюминиевого кабеля сечением 1.5 мм.кв для потолочных светильников, тоньше электрического кабеля практически не бывает в продаже. Выбираем и покупаем ближайшие сечения с округлением в большую сторону.

Алюминий мы выбираем потому, что он недорог, а потолочная линия практически ненагружена. Кабели следует выбирать в двойной изоляции и с изолирующими проводниками.

По току выбираем и автоматы. Для линии потолочных светильников 2.5 А, для линии розеток в яме 15 А, и остается трансформатор. Поскольку трансформатор трансформирует с тем же самым коэффициентом не только напряжения, но и токи, то мы можем легко подсчитать ток в первичной обмотке: 14 / (220 / 36) = 14*36 / 220 = 2.3 А. Подойдет автомат 2.5 А. Общий максимальный ток составит 20 Ампер и такой же должен стоять автомат. Остается только выбрать подходящее УЗО.

Оно должно быть рассчитано на проходящий ток не менее 20 А и ток срабатывания 10-20 мА, не больше! Приборы с исправной изоляцией имеют практически нулевой ток утечки.

Остальные материалы и технология монтажа

Кабели и шины помещаются в закрытые щитки, коробки и кабельные каналы или лотки. Эти материалы традиционно изготавливались из металла. Сейчас применяют негорючий пластик в форме труб, круглых или прямоугольных. Хуже всего гофрированная труба – в нее бывает очень сложно протягивать кабели и провода.

Лучше всего – кабельные лотки с защелкивающимися крышками. Неплохо подходит металлопластиковая труба для водопровода или отопления.

В местах сгиба, если нельзя сделать этот сгиб большим радиусом из труб, применяют коробки, которые служат для распределения ответвлений и устройства выключателей.

Как коробки, так и трубы должны хорошо крепиться на несущих элементах (стенах, балках, потолках), а соединение труб с коробками должно быть, по возможности, герметичным.

На практике придется проявить терпение и мастерство, даже при использовании самых технологичных материалов.

Протягивание кабелей через трубы должно начинаться с проволоки, которая заводится в трубу с помощью специальной головки, исключающей заедание. Затем кабель привязывают к проволоке и протягивают через трубу. Вот почему предпочтительны лотки с закрывающимися крышками. В них очень легко делать монтаж и ремонт.

Для крепления лотков требуется значительно меньше отверстий и они имеют аккуратный внешний вид. В примере с гаражом лотки могли бы использоваться в вертикальных участках проводки, а потолочные светильники можно подвесить на натянутом тросике.

В коробках желательно использовать зажимное соединение винтами, но можно паять медные скрутки, это также вполне надежный метод. Для перехода от алюминия к меди, во избежание коррозии надо использовать или специальные клеммы, или шайбы из цинка или оцинкованной стали. Это помешает коррозии во влажной среде. “Голый” контакт меди и алюминия неизбежно приведет к коррозии, ухудшению контакта и его перегреву.

Заземление

Как сделать заземление в гараже своими руками? Роль заземления уже обсуждалась выше и теперь о том, как его организовать. Для этого следует вбить в землю недалеко от гаража стальную оцинкованную трубу длиной в 2 метра и приварить к ней круглую сталь, диаметром 6-8 мм. Место заземления желательно выбирать влажным.

Стальной круг (его надо покрасить водостойкой краской), заводится в гараж и там ведется к щитку, где делается еще одна клемма для надежного соединения с шиной PE толстым медным проводом. Заземление тем лучше, чем меньше его сопротивление, поэтому толщина заземляющего проводника должна быть достаточной.

Выполнение эл. проводки в гараже своими силами возможно. Самостоятельная разводка проводки в гараже потребует значительно меньших расходов, чем с привлечением наемных работников. Но если вы хотите провести на высоком уровне электрику в гараже своими руками, то придется многому поучиться в этом процессе и почитать статьи, подобные этой.

Данная статья посвящалась, в основном, скорее проектированию гаражной проводки, чему уделяется не слишком много внимания. Тема не маленькая и в рамках одной статьи невозможно охватить все практические тонкости, связанные с монтажом. Но в интернете много схем проводки для гаража и неплохих видеороликов касающихся именно практической части работ и приемов их выполнения.

Полезное видео

Как сделать проводку в гараже правильно? Смотрите видео ниже:

Помещения, которые расположены ниже нулевого уровня цокольной части здания называют подвалами. Они окружены со всех сторон землей, которая обеспечивает относительную стабильность температуры в течение года и, как правило, лишены естественного света.

Условия эксплуатации подвалов связаны с повышенной влажностью воздуха. Она возникает в результате:

близкого расположения грунтовых вод и технических сложностей создания строительных конструкций, обладающих герметичностью со всех сторон;

выпадения конденсата из поступающего с улицы в помещение воздуха при его охлаждении.

Применяемые меры борьбы с влажностью, основанные на отводе грунтовых вод, проветриваниях, использовании систем вытяжной или приточной вентиляции не всегда эффективны. Они частично повышают сухость воздуха.

Поэтому подвалы отнесены к категории помещений повышенной опасности, а правилами безопасности, действующими при эксплуатации электроустановок, в них запрещено использовать открытую электропроводку на 220 вольт без соблюдения специальных мер.

для технических целей;

в качестве помещений, где удобно круглый год хранить сельскохозяйственную продукцию, овощи, припасы.

Вопрос безопасного освещения подвалов можно решить использованием:

естественного природного света;

искусственных электрических источников, не создающих опасность для поражения человека электротоком.

Естественное освещение подвала

Типовые конструкции окон, используемые в строительстве, не подходят для подвальных помещений. Но современные технические разработки позволяют применять световые фонари на основе туннельного эффекта.

Они имеют оптическую систему, которая воспринимает свет солнца и эффективно передает его по световоду в помещение. Один световой фонарь может освещать площадь около 9 квадратных метров с силой светового потока в пасмурную погоду, сравнимой с той, которую создает обыкновенная лампочка накаливания мощностью 40 ватт.

При солнечной погоде световой поток возрастает более чем в 6 раз.

Принцип работы туннельного фонаря основан на использовании внешнего элемента — купола, который собирает, концентрирует световую энергию, передает ее по световоду с отражающими стенками и освещает внутренним элементом — рассеивателем объем помещения.

Труба световода может быть жесткой или гибкой и достигать длины 6 метров.

Туннельные фонари выпускаются многими производителями с разными техническими характеристиками. Они обладают герметичностью, хорошо удерживают тепло, набирают популярность в строительстве.

Электрическое освещение подвала

Типичные ошибки «домашних мастеров», или как не надо делать электропроводку

Отдельные хозяева подвальных помещений «слепо» копируют те действия по прокладке электропроводки, которые выполняют электрики в квартире. Они недопонимают риски опасностей, которым подвергают себя и близких людей.

Главная ошибка заключается в том, что для освещения применяется напряжение 220 вольт, которое используется даже без своих защитных автоматов и подводится от распределительного щита дома или квартиры.

Выбор и монтаж светильников

На фотографии показан монтаж герметичного в прошлом светильника с защитой стеклянного баллона решеткой, металлический корпус которого разъела ржавчина. Через образовавшиеся щели конденсат из воздуха оседает на электрических контактах патрона и лампы, создавая путь для утечки тока на землю.

Вертикальное крепление подобного светильника на низкой высоте не исключает соприкосновение его корпуса с головой человека. При высокой влажности воздуха это очень опасно.

Установка розетки

С первого взгляда видно, что для монтажа использована специальная диэлектрическая колодка подрозетника промышленного изготовления, которая отделяет токоведущие части розетки от влажной стены, а вся конструкция надежно прикреплена. Достаточно ли этого?

Провода, выходящие из розетки, ничем не защищены, кроме как слоем собственной изоляции, которая подвержена воздействию влаги.

Модель установленной розетки не имеет никакой защиты от проникновения конденсата, постоянно окисляющего ее металлические детали и создающего предпосылки для появления токов утечек.

В помещениях с повышенной влажностью установка розеток для питания электроприборов на 220 вольт запрещена правилами.

Установка выключателя

Обыкновенный выключатель, предназначенный для использования в сухих жилых помещениях, смонтирован на деревянной доске, закрепленной на стене. Конденсат из влажного воздуха не только воздействует на металлические детали выключателя, но и способствует гниению древесины, которая со временем потеряет свои механические свойства.

Электрические провода

Если внимательно рассмотреть фотографию, то можно увидеть, что в качестве тоководов для освещения использованы специальные провода типа «лапша» с усиленной изоляцией, которые предназначены для работы в телефонных сетях и могут эксплуатироваться в закрытых траншеях под землей.

Их медные жилы изготовлены с сечением 1 квадрат, что, в принципе, достаточно для нагрузок, создаваемых одной лампочкой накаливания.

Однако, подключение розетки в эту цепь определяет возможность перегрузки созданной электропроводки, которая, к тому же проложена открытым способом по стенам без использования защитных трубопроводов, коробов и других элементов.

Приведенные на фотографиях нарушения считаются наиболее типичными. Но, на практике можно встретить более опасные подключения электрических аппаратов, повреждения изоляции, оголенные провода, разбитые плафоны, поломанные корпуса выключателей и розеток. О том, чем это грозит читайте здесь: Чем опасна старая электропроводка

Как сделать освещение подвала безопасным

Выбор схемы и метода защит для электропроводки

Безопасный способ использования освещения внутри подвала основан на применении приборов, питающихся от напряжения 36 вольт или ниже. С этой целью используют схему с понижающим разделительным трансформатором.

Для его размещения рекомендуется использовать герметичный электрощиток промышленного изготовления, который монтируют не в самом подвальном помещении, а на входе в него. Там же расположены остальные коммутирующие и защитные устройства.

Контакты выключателя освещения подвала лучше подключить к фазе питающей цепи трансформатора. Это сократит время его работы на холостом ходу.

Электрический кабель от понижающего трансформатора до светильников подвала необходимо смонтировать единой конструкцией без использования распределительных коробок. Его ввод должен исключать попадание конденсата внутрь светильника.

Внутри подвала устанавливать электрические розетки нельзя.

Выбор кабеля и проводов, способы крепления

Отдельные провода без внешней защиты для электропроводки подвала могут потерять свои изоляционные свойства по различным причинам. Их применять запрещено.

Для запитки светильников необходимо пользоваться только кабелями, причем с усиленной двойной изоляцией, обеспечивающей герметизацию токоведущих жил. В качестве примера можно порекомендовать марку кабеля КВВГнг.

Даже такой кабель необходимо защитить от механических повреждений размещением внутри трубопроводов или специальных коробах.

Выбор трансформаторов для электропроводки

Основным показателем при выборе конструкции должна быть допустимая мощность потребления, а не только выходное напряжение. Ведь токи нагрузок в сети 36 вольт отличаются от тех, которые существуют в схемах на 220.

Рассмотрим пример использования лампочки накаливания на 40 ватт в схемах разного напряжения.

В сети 220 ее ток будет составлять 40/220=0,18 ампера. А в схеме с 36 вольтами 40/36=1,1 А. Для цепей 12 вольт 40/12=3,3 А.

Предусмотреть ток потребления лампочки, которую ввернут в патрон светильника через несколько лет, невозможно. Поэтому трансформатору необходимо создать запас по мощности.

Выбор светильников для электропроводки

Конструкция светильника должна защищать лампочки от механического воздействия и проникновения конденсата. Стеклянные колпаки для этого помещают внутрь решетки или выполняют из прочного стекла.

Использование металлических деталей снаружи, подверженных действию коррозии, необходимо свести к минимуму или исключить.

В низких помещениях светильники лучше располагать не на потолке, а на верхней части боковых стен. Это уменьшит нежелательное соприкосновение с ними, увеличит пространство в центральной части помещения.

Выбор выключателей для электропроводки

Обыкновенные конструкции для использования в сухих жилых помещениях для условий работы внутри подвала не пригодны. Промышленность для таких целей выпускает специальные герметизированные выключатели, защищенные от проникновения влаги.

Описанные в статье рекомендации могут быть подвергнуты критике большим количеством оппонентов, которые считают, что нет необходимости так усложнять электропроводку в подвале ради периодического его посещения. Ведь у других людей освещение от 220 вольт работает десятками лет.

Заканчивая статью, хочется задать встречные вопросы: насколько оправданы такие риски и стоит ли ими испытывать собственное здоровье? Задумайтесь над этим.

#1 alekseev_aleksey

  • NWAC Admins
  • 10 293 сообщений
    • Город: Санкт-Петербург, Весёлый Посёлок
    • Авто: Opel Insignia 2011 г.

    #2 Ю-ПИТЕР

  • Audi Club
  • 909 сообщений
    • Город: Pietari
    • Авто: Было 80-В4 АВК АКП (черный), 100-С4 AAR МКП (белый), А6С4 AEL АКП (дипломат), 100-С4 AAR МКП (синий), 100-C4 AAR МКП (т-зеленый). Есть 100-C4 AAR МКП (синий) & Nissan Avenir Salut_J

    Сообщение изменено: Godzilla (12 Май 2009 – 16:06 )

    #3 alekseev_aleksey

  • NWAC Admins
  • 10 293 сообщений
    • Город: Санкт-Петербург, Весёлый Посёлок
    • Авто: Opel Insignia 2011 г.

    #4 Дядя Вова

    Патриот Audi 2006 года

  • NWAC Members
  • 3 076 сообщений
    • Город: СПб
    • Авто: Л200-08. какашка-11

    #5 Killy

  • Audi Club
  • 202 сообщений
    • Авто: Octavia 4×4 TDI

    #6 Дядя Вова

    Патриот Audi 2006 года

  • NWAC Members
  • 3 076 сообщений
    • Город: СПб
    • Авто: Л200-08. какашка-11

    Внезапная проверка отдела гл. энергетика показала, что в закромах Родины есть

    1. 380/36, но при подключении его на 220 выдает 12 вольт и 160 Вт

    Лампочки на 12в есть в свободной продаже.

    Зы пиво люблю невское оригинальное только в таре 0.33

    #7 fox_count

    Танкист по жизни.

  • NWAC Members
  • 3 626 сообщений
    • Город: дорога жизни вч
    • Авто: Киа Соренто 2,5 рестайл

    #8 Дядя Вова

    Патриот Audi 2006 года

  • NWAC Members
  • 3 076 сообщений
    • Город: СПб
    • Авто: Л200-08. какашка-11

    Гараж однако. Техника безопасности.

    alekseev_aleksey, ниче что я за тебя ответил.

    #9 fox_count

    Танкист по жизни.

  • NWAC Members
  • 3 626 сообщений
    • Город: дорога жизни вч
    • Авто: Киа Соренто 2,5 рестайл

    #10 alekseev_aleksey

  • NWAC Admins
  • 10 293 сообщений
    • Город: Санкт-Петербург, Весёлый Посёлок
    • Авто: Opel Insignia 2011 г.

    Да хрен их знает, была какая-то проверка, всех вздрючили, а тут я с 220. в общем надо чтобы было 36, и только 36. Но и 220 отбирать не будут

    Да, техника безопасности

    #11 Alex305

  • NWAC Members
  • 1 031 сообщений
    • Город: Рамбов (Ломоносов)
    • Авто: француженка

    #12 samol

  • NWAC Members
  • 1 133 сообщений
    • Город: Спб
    • Авто: Hyundai Elantra 2008

    Сообщение изменено: samol (14 Май 2009 – 00:39 )

    42 Вольта вместо 12 — это нужно? Да это просто необходимо.

    Даже современные автомобили, имеют бортовое напряжение в 12 вольт, пришедшее на транспорт с далёких 50 — 60 годов прошлого века. И всех водителей, да и производителей транспортных средств тоже, вроде бы этот привычный всем вольтаж устраивает. Но наверное многие водители замечали, что только стоит включить например подогрев сидений, или обычные фары, и тут же обороты холостого хода начинают падать. Тут всё довольно просто — необходимую мощность, которая требуется для нормальной работы электрических потребителей, можно получить только забрав её от двигателя. И не все водители знают, что для владельца автомобиля, такое превращение механической энергии в электрическую, выходит попросту говоря в выхлопную трубу, вместе с дополнительными литрами сожжённого топлива. И чем больше электропотребителей и мощнее они, тем больше топлива сжигается, сжигая деньги владельца.

    Скажу более точно: на каждые сто ватт электрической энергии, расход топлива увеличивается на 170 грамм (миллилитров). Нетрудно подсчитать, сколько лишнего топлива сожрёт ваша машина или мотоцикл, если нашпиговать их например автозвуком, мощностью в 500 или 1000 ватт. И я знаю, что многие рассмеются в лицо и с удовольствием согласятся жечь лишний бензин или соляру, лишь бы слушать качественную и громкую музыку — я и сам такой. Но цель этой статьи в другом.

    Начнём с того, что если всего лишь сэкономить какие то жалкие 100 ват электроэнергии, то конструкторам можно будет снизить вес автомобиля аж на 50 килограмм !!! Я имею в виду ватты, которые автомобиль потребляет от электрических потребителей, установленных на заводе, а не от потребителей, установленных самим водителем при тюнинге. И стремление завлечь покупателя комфортом в автомобиле, заставляет конструкторов оборудовать машины всё новыми и новыми энерго-потребителями. Подогрев зеркал, сидений, стёкол, антено и стеклоподъёмники, различные электронные блоки системы впрыска, ESP, ABC, системы навигации и климатические электроустановки, электрический усилитель руля, и ещё много чего. И о некоторых новейших электрических потребителях, я уже писал на моём блоге, например: электрическая помпа системы охлаждения, турбина с электродвигателем крыльчатки, аккумулятор с подогревом, или электропривод тормозов. Всё это скоро появится на серийных машинах.

    И если совсем недавно, обычная серийная машина среднего класса девяностых -двухтысячных годов, потребляла от 800 до 1500 ватт электромощности, то сегодняшние среднеклассовые автомобили потребляют уже от 3000 до 7000 ватт !!!

    А европейские законы, даже заставили конструкторов установить в современные автомобили электрический подогрев в катализатор, который потребляет 1,5 киловатт !!! электроэнергии, и примерно столько же мощности теряется в проводах по пути к подогревателю. Если посчитать (исходя из 170 мл на 100 ватт, как написано выше) сколько лишнего топлива сжигается из-за подогрева катализатора, то становится непонятным, чего хотят добиться «зелёные»???

    И как я уже говорил выше, всё же не стоит экономить например на удовольствии от музыки или комфорта (ведь за удовольствие не жалко платить), но вот чтобы при этом не сжигать бессмысленно топливо, нужно непременно искать выход.

    А выход есть.

    Ведь известно, что основная потеря электромощности происходит в проводах (я об этом написал выше, сколько теряет в проводах подогреватель катализатора). Это простые законы физики, и напомню, что у каждого провода (проводника) имеется некоторое электрическое сопротивление R. И выделяющаяся в этом проводнике мощность, будет равна произведению I²·R. Но с сопротивлением R почти ничего нельзя сделать. Можно конечно, если заменить медь проводника на серебро (только вот сколько будет стоить такая машина), да и увеличить сечение проводника тоже не выход (возрастёт и масса и цена, и сечение проводов в автомобилях итак уже по самое «нехочу»).

    Но вот зато изменить силу тока I, весьма привлекательно, ведь в формуле сила тока стоит в квадрате (I²), а это значит, что если мы снизим портребляемый ток в 3 раза, то потери уменьшатся аж в 9 раз !!! Как говорится простая математика и никакого мошенничества.

    Так от чего же зависит величина силы тока?

    У любого портребителя электрической энергии мощность вычисляется как произведение U·I, а буква U — это напряжение сети автомобиля. А значит, при одинаковой мощности к примеру подогревателя сиденья, этот подогреватель будет потреблять в 3 раза меньший электрический ток, если напряжение его питания увеличить в 3 раза. Не пойму только, как это конструкторам транспортных средств, до сих пор не пришло в голову поменять 12 вольт на 36 (просто потребителей на машине было мало в те годы). Это нужно было сделать ещё тогда в далёкие 50 — 60-е годы, когда переходили с 6 на 12 вольт! Хотя и было в те годы мало потребителей на машине, но ведь тенденция их роста была очевидна.

    И если мы возьмём 3 батареи по 12 вольт каждая и соединим их перемычками, то в сумме получится всего 36 вольт, но ведь это только в то время, когда машина простаивает в гараже. Стоит только завести двигатель, и получим 42 вольта (ведь 12 вольт при работе мотора повышается до 14 вольт).

    42 ВОЛЬТА.

    42 ВОЛЬТА — это стандарт будущего бортового напряжения земного транспорта. И хочу заменить, что не следует полагать, будто бы вскоре придётся впихивать под капот 3 батареи, которые займут в 3 раза больше пространства под капотом и они будут в 3 раза тяжелее нынешнего 12-вольтового аккумулятора. Совсем нет. Потому что потребляемый к примеру электростартером электрический ток, уменьшится во столько же раз, и мы сможем установить у себя под капотом аккумулятор, ёмкостью всего 20 А/ч !!! Единственное отличие такой батареи от нынешней 12-ти вольтовой — это количество банок: их будет не шесть, а в три раза больше — 18 !!!

    Новый стандарт поможет легче осуществить внедрение систем управления не механически, а по проводам (система Drive by wire). Эта система будет устанавливаться даже в самых важных и ответственных узлах автомобиля: тормоза, рулевое управление и подача газа. И чтобы повысить надёжность этих узлов, от которых зависит безопасность водителя и окружающих, нужно будет установить два совершенно независимых источника элктроэнергии на борту автомобиля (как на самолётах). Проще говоря, на маломощных приборах можно будет оставить 12 вольтовую сеть, а на других более мощных потребителях установить сеть в 42 вольта. Это позволит к тому же не тратится водителям на адаптеры, если они захотят установить в машину 12 вольтовые мониторы телевизоров, компьютеров, навигаторов, телефонов и других маломощных приборов.

    И напоследок скажу, что новые автомобили с 42 вольтовым напряжение на борту уже колесят по дорогам. Например новая машина (семёрка) от БМВ, была выпущена в 2001 году, и напряжение у неё на борту в 42 вольта. Кстати, даже наш отечественный завод, уже выпустил уникальный генератор, напряжение от которого можно выбрать, подключившись к одной из трёх колодок: 14, 28 и 42 вольта. Но об этом в следующей, вот этой небольшой статье.

    Как из 12 вольт сделать 220 при помощи преобразователя напряжения

    Понимание, как из 12 вольт сделать 220, позволяет самостоятельно изготовить преобразователь для получения стандартного сетевого напряжения.

    Чтобы сделать прибор с качественной синусоидой на выходе, обязательно должны быть учтены все требования электротехники.

    В каких случаях необходим преобразователь напряжения?

    Преобразователи напряжения — приборы, изменяющие постоянный ток от аккумуляторной батареи в переменные показатели с заданными параметрами, равными 220 В и 50 Гц.

    В бытовых условиях это устройство обеспечивает беспроблемное функционирование таких приборов, как газовый котел, холодильник, телевизор и другая сложная электротехника при невозможности использовать централизованную подачу электрической энергии на 220 В.

    Особенности влияния параметров на электрические приборы:

    • амплитуда прилагаемого напряжения влияет на частоту оборотов двигателя, а от показателей питающей электросети напрямую зависит скорость валового вращения в двигателе асинхронного типа;
    • бытовые приборы нагревательного типа функционируют при показателях рабочего тока, пропорциональных уровню напряжения, но значительная часть таких изделий не рассчитана на эксплуатацию в нестандартных условиях напряжения;
    • бытовая электротехника часто нуждается в напряжении, отличном от сетевых параметров со строго определенными, стабильными показателями амплитуды, поэтому нормальная работоспособность некоторых приборов возможна только в условиях применения преобразователя напряжения.

    Схема повышающего преобразователя напряжения 12-220 В

    Особенно часто устройство используется в домовладениях с системой автономного обогрева, где в качестве отопительного прибора устанавливается импортное газовое оборудование с электронным управлением и контролем. Работоспособность таких приборов полностью зависит от наличия бесперебойного напряжения в 220 В и 50 Гц с правильной синусоидой.

    Область применения преобразователя напряжения очень широкая, включая походные условия, эксплуатацию яхт и автомобилей, дачные участки без сетевого электроснабжения и так далее.

    Электросчетчики бывают разными по количеству фаз, по тарифам и другим параметрам. Какой счетчик электроэнергии лучше поставить в квартире – читайте рекомендации специалистов.

    Принцип работы светодиодных ламп и советы по ремонту неисправных лампочек своими руками описаны тут.

    С правилами монтажа счетчиков электроэнергии вы можете ознакомиться по ссылке.

    Разновидности преобразователей 12 на 220 вольт

    Инверторы — устройства, позволяющие преобразовывать постоянные токовые величины, включая 12 В, в переменный ток с изменением уровня напряжения или без. Как правило, такие приборы являются генераторами периодического напряжения, приближенного к форме синусоиды.

    Все выпускаемые в настоящее время преобразователи напряжения постоянных токовых величин могут быть представлены:

    • регуляторами напряжения;
    • преобразователями уровня напряжения;
    • линейными стабилизаторами.

    Самодельный преобразователь

    Чисто теоретически, на выход можно получить любые токовые величины, регулируемые от нулевой отметки до максимальных значений. Чаще всего в качестве источника постоянного тока на 12 В используется стандартная аккумуляторная батарея. Существующие на сегодняшний день преобразователи отличаются по нескольким параметрам.

    В зависимости от вида получаемой синусоиды:

    • Приборы, создаваемые синусоиду нормального или постоянного вида, характеризуются функционированием без отклонений и соблюдением всех эксплуатационных параметров с высоким уровнем точности. Такие устройства используются в подключении любых электроприборов, которые работают в условиях напряжения 220 В.
    • Приборы, создаваемые синусоиду модифицированного вида, характеризуются незначительными отклонениями в величине напряжения. Такие особенности не способны оказывать негативное воздействие на эксплуатационные качества стандартных бытовых устройств. Тем не менее, такое оборудование не применяется для подключения приборов, относящихся к категории сложной измерительной или медицинской техники.

    В зависимости от показателей мощности:

    • преобразователи с мощностью до 100 Вт не рассчитаны на слишком высокие нагрузки, поэтому являются оптимальным вариантом для питания зарядного устройства простого бытового прибора;
    • преобразователи с мощностью в пределах от 100 Вт до 1,5 кВт. Такой тип устройств применяется преимущественно для питания простых приборов, подключаемых к бытовой электросети;
    • преобразователи с мощностью выше 1,5 кВт позволяют обеспечивать питанием такие достаточно мощные бытовые приборы, включая микроволновую печь, утюги и объёмные мультиварки.
    В зависимости от конструктивных особенностей:
    • устройства компактного типа, отличающиеся неприхотливостью к источнику питания, и функционирующие в условиях напряжения 12-50 В;
    • устройства стационарного типа, обладающие чистым синусом и выдающие низковольтное напряжение 12-36 В;
    • автомобильные устройства переносного типа, характеризующиеся работой в определенных устройствах.

    При выборе модели преобразователя показателей напряжения рекомендуется приобретать прибор, имеющий некоторый запас по уровню мощности.

    Преобразователи напряжения с 12 на 220 В выдают на выход стандартные показатели, соответствующие основным характеристикам домашней электросети, поэтому являются совместимыми с практически любыми бытовыми приборами.

    По форме сигнала выходного напряжения

    Электронные устройства в виде преобразователей или инверторов различаются в зависимости от формы сигнала в выходном напряжении:

    • Модифицированный вариант, представленный плавной синусоидой, измененной до трапециевидной, прямоугольной или даже треугольной формы. Такие устройства характеризуются ограниченной областью использования и пригодны для потребителей, представленных осветительными и нагревательными приборами. Чтобы обеспечить функционирование оборудования с индуктивной нагрузкой, инверторная мощность должна иметь значительный запас, что обусловлено высоким пусковым током.
    • Вариант «чистой» синусоиды используются в питании любого вида нагрузки, а также позволяют обеспечить надежное и стабильное функционирование высокочувствительного оборудования. Значительная часть инверторов такого вида имеет зарядное устройство встроенного типа, благодаря чему используется в качестве источника бесперебойного питания.
    • Гибридный вариант подходит для обеспечения схем электрического снабжения, рассчитанных на обслуживание нескольких источников питания. В устройстве есть возможность использовать определенный вид приоритетного источника энергии или использовать сразу несколько вариантов с целью зарядка аккумуляторной батареи.

    Преобразователь напряжения 12-220 самодельный

    При выборе устройства следует обратить внимание на доступность альтернативных источников энергии, что позволяет быстро окупить приобретенное, достаточно дорогостоящее оборудование.

    Приобретаемое устройство должно иметь оптимальные показатели номинальной мощности, защиту от перегревов и замыканий, систему пассивного и активного охлаждения, а также достаточный для функционирования КПД.

    Трансформаторные устройства

    Преобразователи трансформаторного типа являются устройствами, основанными на двух обмоточных системах. Приборы такого вида характеризуются изменением индуктивной связи при воздействии входного перемещения.

    При этом осуществляется подключение одной обмоточной системы к источнику переменного тока с напряжением, а вторая обмотка, в этом случае, используется в качестве выходной.

    Автомобильный преобразователь напряжения 12-220 В

    Любой трансформатор предназначен для выполнения таких основных функций, как измерение и защита. Особенно востребованы современные трансформаторные устройства преобразующего типа, предназначенные для выполнения схемы удвоения или утроения частоты питающего напряжения.

    В производственной области и быту современные приборы, позволяющие обеспечивать контроль входного/выходного тока и трансформировать переменные показатели в постоянные параметры, а также способные распределять напряжение, – являются очень востребованными.

    Конструкция обычного повышающего преобразователя напряжения с 12 на 220

    Тем не менее, нужно учитывать и некоторые минусы таких проборов. Основные недостатки преобразователей напряжения представлены восприимчивостью многих моделей таких устройств к повышенным показателям влажности, часто весьма внушительными размерами и сравнительно высокой стоимостью, поэтому к выбору инвертора нужно подходить очень внимательно.

    Видео на тему

    Как из трех вольт сделать 12. Как получить нестандартное напряжение. Автомобильное зарядное usb

    Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

    Получаем 12 Вольт из 220

    Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

    1. Понизить напряжение без трансформатора.
    2. Использовать сетевой трансформатор 50 Гц.
    3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

    Понижение напряжения без трансформатора

    Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

    1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
    2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
    3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

    Гасящий конденсатор

    Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

    • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
    • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

    Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

    Схема изображена на рисунке ниже:

    R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

    Или усиленный вариант первой схемы:

    Номинал гасящего конденсатора рассчитывают по формуле:

    С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

    С(мкФ) = 3200*I(нагрузки)/√Uвход

    Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

    Конденсаторы должны быть такими – пленочными:

    Или такие:

    Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

    Блок питания на сетевом трансформаторе

    Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

    В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

    Uвых=Uвх*Ктр

    Ктр – коэффициент трансформации.

    Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

    Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

    Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

    12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

    Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

    Схема с линейным стабилизатором упоминалась в предыдущем пункте.

    К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

    Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

    Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

    Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

    Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

    12 Вольт из 5 Вольт или другого пониженного напряжения

    Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

    Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

    Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

    Как получить 12В из подручных средств

    Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

    Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

    Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

    Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

    Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

    Как самому собрать простой блок питания и мощный источник напряжения.
    Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


    Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
    Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
    Шаг 1: Какие детали необходимы для сборки блока питания…
    Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
    -Монтажная плата.
    -Четыре диода 1N4001, или подобные. Мост диодный.
    -Стабилизатор напряжения LM7812.
    -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
    -Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
    -Конденсатор емкостью 1uF.
    -Два конденсатора емкостью 100nF.
    -Обрезки монтажного провода.
    -Радиатор, при необходимости.
    Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
    Шаг 2: Инструменты….
    Для изготовления блока необходимы инструменты для монтажа:
    -Паяльник или паяльная станция
    -Кусачки
    -Монтажный пинцет
    -Кусачки для зачистки проводов
    -Устройство для отсоса припоя.
    -Отвертка.
    И другие инструменты, которые могут оказаться полезными.
    Шаг 3: Схема и другие…


    Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
    Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
    Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
    Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

    Схема блока питания 12в 30А .
    При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
    Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
    В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
    Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
    Для охлаждения радиатора можно применить небольшой вентилятор.
    Проверка блока питания
    При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
    Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

    Блок питания 3 — 24в

    Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
    Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
    Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

    Схема блока питания на 1,5 в

    Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

    Схема регулируемого блока питания от 1,5 до 12,5 в

    Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

    Схема блока питания с фиксированным выходным напряжением

    Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

    Схема блока питания мощностью 20 Ватт с защитой

    Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
    По какой схеме: импульсный источник питания или линейный?
    Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
    Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
    Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
    Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
    Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
    На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

    Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
    Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
    Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

    Самодельный блок питания на 3.3v

    Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

    Трансформаторный блок питания на КТ808

    У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
    У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

    При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

    Блок питания на 1000в, 2000в, 3000в

    Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
    Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
    Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

    В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
    Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
    R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

    Еще по теме

    Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

    Ремонт и доработка китайского блока питания для питания адаптера.

    DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

    При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

    Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


    После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

    Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


    Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


    Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

    Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

    Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

    Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

    Вариант №1

    Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

    Вариант №2

    На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


    Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


    Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

    U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

    Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


    Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


    Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



    Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

    Вариант №3

    Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

    Итак, схему в студию!


    Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


    Итак, что на выходе?


    Почти 5.7 Вольт;-), что и требовалось доказать.

    Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


    На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

    36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус

    В прошлом обзоре блока питания я затронул тему того, как выбрать правильный блок питания. Если честно, то я немного не ожидал, что эта тема окажется такой нужной. В комментариях, а еще больше в личной переписке, меня спрашивали и о других нюансах выбора, принципах работы и о алгоритме поиска неисправностей.
    В этом обзоре я постараюсь ответить на большую часть этих вопросов, а также возможно затрону тему новых вопросов 🙂

    Начну с того, что для одного из моих ближайших проектов потребовался блок питания на 36 Вольт 10 Ампер. Вернее потребовалось их два, и заказал их два, но так как они абсолютно одинаковые, то и обзор будет на один блок.
    Для чего и зачем я пока писать не буду, уж извините, но этот блок питания мы разберем «по винтикам».

    Как всегда, сначала упаковка.
    Пришли блоки питания (помимо общей упаковки) в обычных картонных коробках белого цвета, опознавательные знаки на упаковке отсутствовали, просто две большие коробки.
    На вид абсолютно одинаковые, впрочем я бы скорее удивился если бы они были разными 🙂

    Основное отличие импульсных блоков питания от тех, которые используют 50Гц трансформаторы — размер. Второе отличие — цена.
    50Гц трансформатор на такую мощность будет иметь гораздо большие размеры и хоть он по конструкции намного проще, но будет иметь большую цену, так как содержит больше меди и железа.
    Кроме того импульсные БП имеют больший КПД, потому в последнее время получили большое распространение, хотя «железные» трансформаторы отличаются большей надежностью.
    Но стоит учитывать, что брендовые БП имеют обычно еще большую сложность и цену, так как имеют хорошую элементную базу, фильтры питания, корректоры мощности и т.п, потому чаще люди пользуются более простыми вариантами от небольших китайских фирм.
    Один из таких блоков питания мы и рассмотрим в этом обзоре.
    Если до этого мы рассматривали блоки питания небольшой мощности, то в этот раз я расскажу про довольно мощный вариант БП мощностью 360 Ватт, хотя на фоне вариантов Бп мощностью 800-2000 Ватт и он кажется «малышом».

    Как я выше писал, импульсные БП имеют чаще небольшие размеры.
    Данный блок питания имеет высоту примерно как у коробка спичек — 49мм. Длина блока питания 215мм, ширина — 114мм.

    На одной из боковых граней корпуса присутствует маркировка:
    S-360-36
    Мощность блока питания 360 Ватт
    Выходное напряжение — 36 Вольт
    Максимальный выходной ток — 10 Ампер
    Входное напряжение — 110/220Вольт ±15%

    На второй стороне присутствует переключатель диапазона входного напряжения, в наших странах неактуальный и даже вредный, так как переключив в режим 110 Вольт и включив в стандартную сеть 220-230 Вольт мы получим скорее всего громкий бах.
    Я обычно при ремонте таких БП сразу выкусываю этот переключатель, просто в целях безопасности.

    Сверху корпуса установлен небольшой вентилятор. При таких мощностях блоки питания уже крайне редко делают с пассивным охлаждением, мне такие попадались всего несколько раз, но из-за сложности конструкции они имеют уже очень высокую цену, потом очень мало распространены.
    Рядом присутствует надпись, указывающая, что вентилятор управляется автоматически в режиме вкл/выкл в зависимости от температуры.
    Немного забегая вперед скажу, что никакой автоматики нет, без нагрузки он вращается медленно, но стоит хоть чуть чуть нагрузить БП, обороты сразу возрастают до штатных независимо от температуры.

    В прошлом обзоре я писал, что блоки питания, рассчитанные на большой выходной ток, обычно имеют разделенные клеммы для подключения нагрузки. Так сделано в этом БП, здесь установлено по три клеммы на плюсовой и минусовой контакты.
    Входные клеммы стандартны — Фаза, ноль, заземление.
    Также слева установлен светодиод индикации работы блока питания и подстроечный резистор для корректировки выходного напряжения.

    Клеммник имеет защитную крышку, которая открывается на 90 градусов, а в закрытом состоянии защелкивается.

    У меня есть привычка разбирать БП перед первым включением. Делаю я это в целях безопасности, так как бывали разные случаи.
    Внутри данного БП на вид все нормально, за исключением небольшого нюанса, который я заметил сразу. Дело в том, что выходной дроссель имеет большие размеры и почти касается верхней крышки, это не очень безопасно. Током конечно не убьет, но БП может пострадать, я бы рекомендовал проложить дополнительную изоляцию между дросселем и крышкой. Такой проблемой страдают многие недорогие блоки питания, так что это не косяк данного блока.

    Как я писал выше, охлаждается блок питания посредством небольшого вентилятора.
    Судя по маркировке, вентилятор имеет размеры 60х15мм, т.е. 60мм это длина и ширина, а 15мм — толщина.
    Вентилятор рассчитан на 12 Вольт. к сожалению здесь применен недорогой вентилятор, кроме того имеющий подшипники скольжения и если вы планируете применить где нибудь такой БП, то для длительной беспроблемной работы я бы заменил его на что нибудь более правильное.
    Я уже как то писал в своих обзорах, что чаще всего применяю вентиляторы фирмы Sunon, на мой взгляд у них довольно высокое качество и надежность.
    Из хорошего можно сказать то, что вентилятор в данном БП довольно тихий, что очень хорошо.

    Силовые полупроводники прикручены к алюминиевому корпусу блока питания через небольшие теплораспределяющие проставки.
    Мне не очень нравится подобный вид крепления полупроводников, но так делают почти все. например в блоках питания фирмы Менвелл транзистор крепится точно также, правда там в целях безопасности на него одет резиновый колпачок.
    Так как данный блок питания двухтактный, то высоковольтных транзисторов два, а не один.
    Выходной диод один, хотя на плате присутствует место под установку второго, подключаемого параллельно первому. Второй устанавливается в блоках, рассчитанных на меньшее напряжение и больший ток, но никто не мешает поставить и здесь второй, но это уже скорее доработка, а измерения покажут, имеет ли смысл данная операция.

    Осмотр закончили, включаем и производим небольшую проверку.
    Цель данной проверки, выяснить пределы регулировки выходного напряжения и вставить на выходе БП то напряжение, на которое он рассчитан, ну или то, которое необходимо.
    1. при включении БП показал на выходе 36.8 Вольта.
    2. минимальное напряжение, которое можно выставить — 34.53, я рассчитывал, что минимальный порог будет ниже, для моего применения придется дорабатывать.
    3. А вот максимальный порог сильно удивил. Когда крутил, то даже стало немного не по себе. 52.3 при штатном 36. Ожидал что БП накроется, пока я фотографирую, но все прошло нормально, хотя я не рекомендую выставлять такое напряжение на выходе, чаще нормальным считается ±10% от штатного.
    4. Выставляем на выходе 36 Вольт. Судя по диапазону перестройки уже можно понять, что регулировка очень грубая, потому мне пришлось немного помучаться чтобы выставить ровно 36 Вольт, хотя в реальной жизни это смысла не имеет и сделано было только для обзора 🙂

    Разбираем блок питания дальше.
    Транзисторы довольно неплохо прилипли к своей пластинке, отдирать их не хотелось потому я открутил и теплораспределительную пластинку 🙂

    К плате особых нареканий не возникло, обычная недорогая сборка, бывало и хуже, но бывало и лучше, по пятибальной шкале на 3 балла.
    Но один дефект все таки нашел, была не очень хорошая пайка одного из контактов трансформатора. Непропай в данном месте ни к чему фатальному бы не привел, но расстроил.
    Дорожки. по которым течет значительный ток, дополнительно пролужены припоем.

    Естественно я начертил схему данного БП, делал я это только для обзора, так как схемотехнику этих блоков питания знаю хорошо и обычно в схеме не нуждаюсь, но возможно кому нибудь будет полезно, так как такая схема (с некоторыми небольшими изменениями) используется в большинстве БП такой мощности.
    Но хотя я и знаю хорошо эту схемотехнику, перечерчивать схему по плате было не очень удобно и заняло больше времени, чем я планировал.
    Схема практически повторяет схему классического компьютерного блока питания и как показала практика, является очень ремонтопригодной.
    На схеме присутствует шунт для измерения тока, на схеме его сопротивление указано как 0.1 Ома, но на самом деле при прозвонке он скорее был ближе к перемычке.

    Дальше я решил немного рассказать о том, как вообще работают такие блоки питания, тем более что многие узлы являются типичными для почти всех импульсных блоков питания.
    На этой блок схеме обозначены основные узлы импульсного блока питания. Правда сейчас задающий генератор и схема управления выполняются в одной микросхеме, а иногда микросхема содержит с высоковольтный транзистор.
    Иногда по входу импульсного блока питания устанавливают Корректор Коэффициента Мощности, а в мощных БП он является обязательным, если БП соответствует европейским нормам, но об этом я расскажу как нибудь в другой раз, так как в недорогих БП он почти не встречается.

    На основании этой блок схемы я дальше и буду рассказывать об этом БП, но для начала немного теории о процессах, происходящих в импульсном блоке питания.
    Ключевое в работе импульсного блока питания, это принцип ШИМ стабилизации, правда стоит отметить, что вполне существуют и импульсные блоки питания без этого, но они являются не стабилизированными, т.е. выходное напряжение зависит от мощности нагрузки и входного напряжения.
    ШИМ регулирование это изменение соотношения времени включенного состояния коммутирующего элемента к выключенному состоянию.
    Если на графике, то выглядит это так:

    Если «на пальцах», то я недавно объяснял в личке этот принцип стабилизации, попробую повторить здесь.
    Многие наверное помнят задачки типа — через одну трубу в бассейн поступает вода со скоростью х литров в минуту, через другую выливается со скоростью Y литров в минуту.
    Вот на этом принципе я и объясню как это работает.

    Для начала представим, что существует очень большая емкость (электрическая сеть), маленькая емкость (конденсатор выходного фильтра питания), ну и всякие мелочи для переправки воды из одного места в другое.
    На бочке установлен кран, через него вода убегает к потребителю, ну или энергия в нагрузку.
    Пополнять бочку мы можем только определенное количество раз в минуту (бывают альтернативные варианты, но о них пока не будем), например 100 раз.
    Наша задача, поддерживать уровень воды в бочке всегда постоянным.
    Так как пополнять может только определенное количество раз в минуту, то значит пополнять придется разными объемами.
    К примеру если потребление маленькое, то будет достаточно обычных чашек, а если кран открыли на полную, то придется использовать ведра.
    В ШИМ регулировке это означает меньшую или большую ширину открытого состояния силового элемента.
    Если кран закрыт, то пополняем бочку наперстками, есть же еще испарение (утечки, нагрузка цепи обратной связи т.п.) которое надо компенсировать 🙂

    Используя узел обратной связи, контроллер отслеживает напряжение на выходе блока питания и подстраивает мощность, передаваемую в нагрузку так, чтобы напряжение на выходе БП оставалось неизменным.
    Кстати, таким способом можно сделать обратную связь по чем угодно.
    Например в драйверах светодиода контроллер следит за током.
    Можно следить за температурой, подстраивая скорость вентилятора, за освещением, регулируя яркость лампочки и т.д. и т.п.

    На этой диаграмме показано:
    1. Ток в цепи трансформатора (условно)
    2. Сигнал управления ключевым транзистором
    3. Напряжение на выходном конденсаторе.

    Существует довольно много топологий построения импульсных блоков питания, я нарисовал несколько самых распространенных.
    Немного расскажу о них.
    1. Обратноходовый преобразователь. Применяется там, где хорошо иметь большой диапазон входного напряжения и небольшая мощность (до 100-150 Ватт). Скорее всего Бп вашего планшета или монитора применена именно эта схема.
    2. Полумостовой преобразователь. Также очень распространенная схемотехника. Думаю что я буду не сильно далек от истины, если скажу, что в 95% компьютерных БП применена именно такая схемотехника. Ее преимущества — большая мощность при относительно простой схемотехнике, меньший размер трансформатора, так как трансформатор применяется без зазора, в отличии от первого варианта.
    3. Двухтактный преобразователь (PushPull- Тяни-Толкай). Данная схема в сетевых блоках питания применяется крайне редко, зато она нашла широкое применение в инверторах недорогих блоков бесперебойного питания.
    4. Мостовой преобразователь. Так сказать «расширенная» версия полумостового. Преимущества — большая мощность, ток через силовые ключи в два раза ниже чем в полумостовой.
    Также такая схема применяется в более сложных блоках бесперебойного питания.

    Существует еще несколько топологий, но они являются производными от приведенных выше, и менее распространены, потому не вошли в данную статью.

    В этот раз я также начертил цветной вариант схемы обозреваемого блока питания, где цветом обозначил основные узлы, о которых говорил выше.
    Как я писал, некоторые цвета мне тяжело назвать правильно, потому буду уточнять.
    Красный — Входной фильтр питания, диодный мост, силовой узел.
    Красно-фиолетовый (слева внизу) — Узел управления мощными транзисторами инвертора.
    Зеленый — Микросхема- ШИМ контроллер и ее «обвязка».
    Синий — Выходной выпрямитель, дроссель и конденсатор фильтра
    Голубой — Цепь контроля выходного тока
    Фиолетовый — Узел контроля выходного напряжения
    Желто-рыжий — Узел блокировки преобразователя при снижении напряжения на выходе.

    В этой схеме нет привычного элемента, который был на всех прошлых схемах — оптрона. Дело в том, что здесь ШИМ контроллер питается от выходного напряжения. первоначальный запуск бока питания происходит благодаря резисторам R8 и R14. Такой принцип применялся в компьютерных БП АТ стандарта, с приходом АТХ стандарта контроллер стал питаться от источника питания дежурного режима и эти резисторы исключили из схемы.

    Дальше я покажу большую часть узлов и элементов на примере конкретного блока питания.
    Начнем с сетевого фильтра.
    В этом БП он есть, это уже хорошо, так как в дешевых компьютерных БП вместо него ставят просто перемычки, но в дорогих он может быть и многоступенчатым. Здесь средний вариант между этими двумя.

    По входу блока питания установлен предохранитель и ограничитель пускового тока — NTC терморезистор (термистор).
    Также присутствует Х2 конденсатор для уменьшения помех, излучаемых блоком питания, в сеть.

    Двухобмоточный синфазный дроссель намотан довольно толстым проводом, хотя размеры при такой мощности могли сделать бы и побольше.
    Входной диодный мост KBU808 рассчитан на 8 Ампер 800 Вольт.

    В фильтре питания присутствуют как Y конденсаторы, так и один обычный, высоковольтный.
    Но в данном случае применение обычного высоковольтного вместо конденсатора Y типа безопасно, так как если БП не заземлен, то даже при его пробое выход БП будет все равно подключен через Y конденсатор, а если БП заземлен, то тем более ничего не будет 🙂

    Конденсаторы входного фильтра питания промаркированы как 680мкФх250 Вольт.
    Если верить маркировке, то в принципе их емкость достаточна, а напряжение выбрано даже с запасом.

    Но реальность оказалась несколько другой, емкость конденсаторов всего 437мкФ, что при последовательном соединении дает всего около 220мкФ. Мало, хоть в принципе и терпимо.
    Большая емкость дает больший срок жизни конденсаторов, меньшие пульсации и добавляет запаса по входному напряжению в сторону уменьшения напряжения.
    Я думаю потом их заменить на что то поприличнее, но пока не нашел подходящих, так как данные конденсаторы имеют высоту 35мм, максимум можно попробовать установить 40мм, а большинство найденных мною конденсаторов имеют высоту 45мм.
    На плате выделено место под конденсатор большего диаметра, так что «будем искать» 🙂

    Узел ШИМ контроллера и инвертора.
    В качестве ШИМ контроллера применена «классика жанра», KA7500, которая является почти полным аналогом TL494, наверное самого распространенного ШИМ контроллера, соперничать с ним по популярности может разве что uc384x.
    Силовые ключи инвертора — MJE13009

    К сожалению теплораспределительная пластина прижимается к корпусу без пасты. Тестирование показало, что проблем из-за этого не возникает, но я бы для успокоения души все таки нанес термопасту.

    Узел выходного трансформатора, выпрямителя и конденсаторов фильтра.

    Выходной диод — SF3006PT, это 30 Ампер 400 Вольт диод, что для 10 Ампер блока питания более чем достаточно.
    Как я выше писал, рядом есть место для второго диода, потому в принципе можно немного улучшить характеристики, но на самом деле прирост КПД будет мизерным.

    Выходной дроссель.
    Здесь он выполняет несколько другую функцию чем в обратноходовых блоках питания, из-за этого и такие большие размеры. Скажу лишь что его размеры соответствуют заявленной мощности блока питания. Кроме его высоты замечаний нет.
    Конденсаторы выходного фильтра.
    Производитель поставил три конденсатора по 1000мкФ 63 Вольта.
    Обычно я говорю, что емкость выходного конденсатора должна быть равна 1000мкФ на каждый ампер выходного тока. В двухтактных блоках питания требования менее жесткие, и даже бренды ставят такую же (а иногда и меньшую) емкость при таком токе, правда в их оправдание могу сказать, что в брендовых БП конденсаторы стоят лучшего качества.
    Также на фото попал токовый шунт и видно, что для более сильноточных вариантов есть место для дополнительных шунтов.

    Здесь с емкостью все в порядке. Практически соответствует заявленной.

    После осмотра я скрутил все обратно, только не привинчивал верхнюю крышку и перешел к этапу тестирования под нагрузкой.
    Стенд у меня остался тем же, что и в предыдущие разы и состоит из:
    Электронной нагрузки
    Мультиметра
    Бесконтактного термометра
    Осциллографа
    Ручки и бумажки 🙂

    Правда в этот раз мне пришлось снять верхнюю крышку с электронной нагрузки, так как боялся что она будет перегреваться на такой мощности.
    В основном тестирование проходило как и в прошлые разы, за исключением того, что для измерения температуры мне приходилось на ходу снимать верхнюю крышку. Из-за этого некоторые значения измеренных температур будут чуть завышенными так как БП успевал чуть подогреваться без принудительного охлаждения.

    1. Режим холостого хода, напряжение выставлено 36.03 вольта, пульсации практически отсутствуют.
    2. Ток нагрузки 2 ампера, напряжение чуть поднялось и составило 36.06 вольта, пульсации в норме.

    1. Ток нагрузки 4 Ампера, выходное напряжение поднялось еще немного, пульсации в норме.
    2. Ток нагрузки 6 Ампер, выходное напряжение 36.09 Вольта, это очень хороший результат, пульсации при этом всего 50мВ

    1. Ток нагрузки 8 Ампер, выходное напряжение почти неизменно, пульсации выросли до 75мВ, но все равно остаются низкими для такого тока.
    2. Ток нагрузки 10 Ампер, выходное напряжение поднялось до 36.12 Вольта, отличный результат, изменение от исходного всего 0.3%. Пульсации выросли до 100мВ, на мой взгляд ничего страшного, особенно с учетом того, что БП выдает 360 Ватт и 100мВ это всего 0.25-0.3%
    Для примера, если бы это был БП на 12 Вольт, то эквивалент пульсаций равнялся бы 30мВ.
    К сожалению последний тест длился всего 15-16 минут из привычных мне 20, на электронной нагрузке сработала защита от перегрева и отключила нагрузку 🙁

    Дав нагрузке немного остыть, я решил ради эксперимента продолжить тест, но уже при 12 Ампер токе, проверять так проверять 🙂
    Решение провести это эксперимент я принял потому, что компоненты БП имели температуру далекую от максимальной.
    Но увы, проработал так БП максимум минуту, я сделал фото, снял осциллограмму, но потом последовал очень тихий щелчок (хотя на фоне воя вентиляторов нагрузки может и не такой тихий), малюсенькая вспышка в районе силовых ключей и БП затих 🙁
    Правда у меня было маленькое подозрение, что виновата электронная нагрузка, она в определенной ситуации, при перегреве, могла закоротить выход БП (если сначала сработала защита на том радиаторе, где расположен датчик тока), хотя до такой температуры за минуту она прогреться не успела бы, но в любом случае БП не выдержал 🙁

    Осциллограмма перед выходом из строя.
    Видно что напряжение пульсаций находится вполне в норме. Но меня расстраивают более высокочастотные пульсации, вызванные скорее всего «звоном» в силовых цепях, как по мне, это одна из возможных причин выхода из строя, но утверждать не буду.

    Измерение теплового режима работы проходило как всегда, 20 минут прогрев, измерение температур, повышение тока на одну ступень и т.д.
    Полученные результаты можно понять из таблицы. Верхняя строка цифр — измерение температур на холостом ходу, заодно я проверил что термометр показывает одинаковые значения на разных компонентах.

    В качестве небольшого бонуса я немного опишу методику поиска неисправности и ремонта конкретно этого БП и принципов поиска неисправности для основной массы поломок остальных.

    Поломали, ремонтируем

    Вообще, буквально недавно меня в личке спрашивали о алгоритме поиска неисправности, на что я ответил —
    Может даже имеет смысл написать такую статью, правда пока не знаю к чему ее привязать, разве что спалить БП который пришлют на обзор :))))
    Как в воду глядел 🙂

    В данном случае поломка оказалась не очень сложной, да и вообще я выше писал, что данный тип БП очень ремонтопригоден.
    Здесь даже предохранитель остался цел 🙂

    Для начала я должен предупредить, что при ремонте импульсного БП приходится работать с цепями имеющими высокое напряжение и имеющими непосредственную связь с сетью 220 Вольт. По правилам техники безопасности блок питания должен при этом питаться через развязывающий трансформатор, чтобы обеспечить гальваническую развязку с сетью 220 Вольт.

    Первым делом при поиске неисправности производят общий осмотр, это очень важный этап, иногда позволяющий локализовать место поломки.
    Также немаловажно знать, после чего вышел из строя БП.
    1. Новый БП, чаще при работе или КЗ в нагрузке — силовые цепи.
    2. Старый БП, если перед поломкой были проблемы с запуском. Либо перед поломкой его отключили от сети (для БП работающих постоянно) — конденсаторы выходного фильтра. Такая поломка чаще всего «тянет» за собой и высоковольтную часть, в низковольтной части чаще всего все остается исправным.
    3. Старый БП, но предохранитель цел и даже есть попытки запуска — чаще всего виновата потеря емкости конденсатора фильтра питания ШИМ контроллера, обычно встречается на БП небольшой мощности собранных по обратноходовой схеме.

    Дальше немного по компонентам.
    Предохранитель цел — значит скорее всего цел и диодный мост, но на маломощных Бп роль предохранителя может сыграть обмотка входного дросселя.
    Предохранитель сгорел — скорее всего дело плохо, но есть варианты
    1. Если на входе БП есть защитный варистор и подали больше 300 Вольт, то чаще все решается заменой варистора и предохранителя.
    2. Варистора нет, либо он цел. Вот тут скорее всего дело худо, проверяем — диодный мост и высоковольтный транзистор (или транзисторы если их два).

    Чаще всего диодный мост выходит из строя только при сгорании высоковольтных транзисторов, сам по себе выходит из строя очень редко.

    Следующий этап, проверяем высоковольтный транзистор, лучше его выпаять, так как если вышел из строя диодный мост, то это может давать ложное КЗ.
    Если транзистор имеет КЗ хотя бы между двумя выводами из трех, то он умер. Если транзисторов два, то с вероятностью 99% умер и второй, менять лучше парой.
    В моем случае так вышло. что транзисторы имели пробой между коллектором и базой, потому предохранитель остался цел так как не было КЗ по цепи высоковольтного питания. Это довольно редкий случай, чаще имеем КЗ между всеми тремя выводами.
    Если транзистор сгорел, то проверяем резистор подключенный к выводу базы, так как чаще всего сгорает и он. Вывод эмиттера также может быть подключен к токоизмерительному резистору, обычно мощный и стоит рядом, проверяем и его.
    В моем случае я имел два сгоревших транзистора и два резистора.

    Следующий этап, подбор замены.
    Если есть родные либо их можно купить, то отлично, если нет, то ищем замену.
    При поиске замены сначала определяем что за транзисторы стояли, и ищем документацию на них. после этого ищем варианты, которые есть в наличии/продаже и сравниваем их характеристики.
    У транзисторов, которые стояли в импульсном блоке питания обращаем внимание на следующие ключевые характеристики. Вообще влияет еще коэффициент передачи по току и граничная частота. Первый параметр лучше иметь похожий на тот что был в сгоревшем, второй если будет больше, то лучше. У полевых транзисторов надо смотреть на емкость затвора (Input Capacitance), чем меньше, тем лучше.
    В моем случае транзисторы биполярные, потому и демонстрировать буду на их примере.
    Я привел три варианта, родной — подходящий вариант — неподходящий вариант.
    Хотя в неподходящем варианте критичны последние два параметра.

    В моем случае родных не было, но были транзисторы с «доноров».
    Резисторы подобрать проще, если нет подходящего номинала, то можно соединить несколько штук параллельно или последовательно. Но у меня были подходящие резисторы.

    Резисторы сгорели очень аккуратно, сразу даже и не заметишь маленькую трещину в покрытии. Не было ни дыма и особого шума, разве что маленькая вспышка.

    Перед заменой транзисторов желательно сначала проверить остальные компоненты рядом с ними иначе замененные компоненты ожидает судьба предыдущих.
    Конкретно по этой схеме. Диоды параллельно коллектору и эмиттеру не сгорают никогда (по крайней мере я такого не видел), диоды в базе иногда сгорают, но в данном случае стоят довольно мощные диоды (чаще ставят мелкие 4148) и они остались целы. Конденсатор также выжил, выходят из строя здесь они редко, резистор межу коллектором и базой также можно не проверять, но стоит проверить резистор между базой и эмиттером.
    Трансформатор — довольно надежный компонент и чем мощнее, тем надежнее, но у меня бывали случае межвиткового КЗ у мелких трансформаторов, причем обычным мультиметром это определить сложно или вообще невозможно.

    После замены деталей неплохо проверить ШИМ контроллер. Первым у этих микросхем страдает внутренний стабилизатор напряжения 5 Вольт. Для проверки подаем питание 10-20 Вольт на микросхему (я подключился к конденсатору фильтра питания микросхемы) и измеряем напряжение между минусом питания и 14 выводом.
    220 Вольт пока не подаем.
    На фото питание в норме.

    Если интересно, то можем подключиться к задающему генератору и посмотреть на красивую «пилу» 🙂
    Ее наличие означает, что задающий генератор микросхемы работает.

    После этого можно проконтролировать прохождение управляющих импульсов к силовым транзисторам.
    Кстати. Если БП работал долго, то из-за высыхания емкости конденсатора фильтра питания микросхемы (или высыхания конденсатора в Бп дежурного режима АТХ БП), она могла выйти из строя.
    Иногда выход из строя выходных транзисторов тянет за собой и два управляющих транзистора, на схеме это Q2, Q3. Кроме них обычно ничего из строя не выходит.
    Данный БП не даст управляющие импульсы на мощные транзисторы пока не «обойти» защиту от пониженного напряжения на выходе, я это сделал закоротив эмиттер и коллектор транзистора Q5.
    Если все в порядке, то между эмиттером и базой будет примерно такая картинка:

    Все, на этом основная часть ремонта закончена.
    Промываем плату от остатков флюса, я всегда рекомендую это делать, как минимум из-за культуры ремонта.

    С лицевой стороны платы ремонт «выдают» только отечественные резисторы.
    Заодно я немного приподнял транзисторы, чтобы они лучше прижимались.

    Для проверки я всегда включаю БП через лампу накаливания. Это позволяет сократить количество походов в магазин за деталями 🙂
    Лампу я использую мощностью 150 Ватт, она включается последовательно с сетью и при нормальной работе должна только моргнуть немного при включении.
    В штатном режиме на холостом ходу она даже не накаляется, менее мощная лампа может немного накаляться, но на грани различимости, это также нормально.
    Включаем, проверяем, все работает 🙂

    Некоторые дополнения.
    Если вы заметили, что ваш блок питания требует «прогрева» перед включением и это время постепенно увеличивается, то следует проверить конденсаторы БП, так как если затянуть с этим, то все может закончиться выходом из строя высоковольтного транзистора и часто микросхемы ШИМ контроллера.
    Выходной диод БП выходит из строя редко, но лучше его проверить, обычно это можно сделать даже не выпаивая его из платы.
    С переходом на импульсные блоки питания самая частая поломка — выход из строя электролитических конденсаторов, причем иногда емкость он может иметь нормальную, но внутреннее сопротивление сильно увеличивается.

    Для общего развития я добавил для скачивания неплохую книгу по импульсным блокам питания.

    Резюме.
    Плюсы
    Блок питания выдал заявленную мощность
    Тепловой режим работы в норме
    Небольшой уровень пульсаций
    Наличие нормального фильтра по входу 220 Вольт
    Отличная стабильность выходного напряжения
    Хорошая ремонтопригодность

    Минусы
    Проблемы с надежностью при перегрузке или коротком замыкании
    Конденсаторы входного фильтра имеют заниженную емкость
    Нет заявленного автоматического управления вентилятором.
    Низкое качество выходных конденсаторов

    Мое мнение. Меня очень расстроило то, что блок питания вышел из строя, хотя это и произошло при мощности выше заявленной, но это говорит об отсутствии либо некорректной работе защиты от перегрузки. Но в то же время обрадовал температурный режим блока питания, даже при максимальной мощности никакие компоненты не перегревались, хотя выходящий воздух имел легкий запах нагретых компонентов, но это частая особенность новых блоков питания.
    Но даже при том, что я спалил этот блок питания, могу сказать, что он имеет неплохой потенциал и если его не перегружать, то будет работать. В основном это связано с отработанностью данной схемотехники, здесь тяжело что то накосячить, хотя проблемы с надежностью вылезли 🙁
    В будущем я думаю его немного доработать и надеюсь что в ближайшем времени вы увидите его (хотя скорее их) в одном из моих новых устройств, на которое я потихоньку готовлю обзор, там же будет и описание доработки.

    Вполне возможно что в обзоре присутствует некоторое количество ошибок, если заметили, пишите, исправлю или дополню при необходимости.
    Вся информация о ремонте основана на личном опыте. Вообще разнообразие причин поломок и методов определения неисправности гораздо больше, чем я описал, но боюсь что все описать очень тяжело и будет ну совсем большая статья.
    Надеюсь что хотя бы часть читателей найдет ответы на свои вопросы, которые они мне задавали.

    Магазин дал скидку на блок питания, исходная цена была 30.2 доллара, в течении недели будет действовать цена 26.99.

    Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

    Аккумулятор 24 В, разъемы аккумулятора

    Узнайте, как соединить две 12-вольтовые батареи, чтобы получить одну 24-вольтовую батарею. Это обычное приложение, необходимое для подачи питания на троллинговый двигатель, требующий 24 вольт. Некоторым более крупным троллинговым двигателям потребуется 36 вольт при последовательном соединении 3 12-вольтных батарей глубокого цикла.

    Аналогично батареям для фонарей

    Соединить вместе 2 или более 12-вольтовых батарей глубокого разряда очень просто и не страшно.Во-первых: задумайтесь — вы привыкли соединять 2 или более стандартных сухих элемента питания AA, AAA, C или D в серию, например, для фонарика. Некоторые фонарики вмещают 4-6 ячеек «D» встык. Это означает, что конец (+) касается конца (-) следующей батареи. Каждая батарея = 1,5 вольта. Фонарь, который содержит 6 ячеек «D», подает питание на источник света напряжением 9 вольт: вы складываете вольт вместе в этом приложении «Series». Если вы случайно закоротите элемент, случайно сделав что-то, что заставит положительный конец коснуться его отрицательного конца, с этими маленькими батарейками для фонарей обычно не будет фейерверков.Это одна большая разница с 12-вольтовыми автомобильными или морскими аккумуляторами — прикосновение (+) к (-) одной и той же батареи вызовет искры! Будь осторожен.


    Батарея 24 В — последовательное соединение

    Используя тот же процесс, что и для фонарей с несколькими батареями, вы можете соединить две 12-вольтовые батареи глубокого разряда вместе, чтобы, по сути, получить 24-вольтовую батарею, которая может питать 24-вольтовый аксессуар — например, троллинговый двигатель. В этом приложении используются батареи глубокого разряда, поскольку они предназначены для выдачи энергии с течением времени, в отличие от типичной стартерной батареи, которая предназначена для создания скачка мощности для запуска двигателя.Ниже приведена схема изготовления батареи на 24 В:

    .

    Провод какого размера?

    Вам необходимо использовать более толстый провод, чем при подключении к батарее радиоприемников, скважинных насосов или эхолотов. Обратите внимание на провода, идущие от аккумулятора к стартеру двигателя вашего автомобиля. Или обратите внимание на провод, который выходит из вашего троллингового двигателя. Вы должны соответствовать этому размеру как можно ближе. Скорее всего, это будет калибр 6-8.

    Используя ту же последовательность, вы можете настроить 36-вольтовую систему.На пресноводных рыболовных судах аккумуляторная система на 24 или 36 вольт чаще всего используется для питания троллингового двигателя. Не подключайте 3 батареи на 12 В для работы троллингового двигателя 24 В. Ваш троллинговый двигатель будет поврежден, если вы попытаетесь подключить 36 вольт, а ваш двигатель рассчитан только на 24 вольт. Внимательно прочтите инструкции. Некоторые новые для рынка троллинговые двигатели 2020 года могут работать от 24 или 36 вольт. Снова читайте внимательно.



    Мы являемся партнером Amazon.Если вы покупаете продукт, который мы рекомендовали, или другой продукт, находясь на Amazon, мы может получить небольшую комиссию. Наши сотрудники рекомендуют то, что у нас есть лично принадлежал, использовал / тестировал, исследовал или ловил рыбу с проверенными рыболовами, которые рекомендую их. Эти продукты не будут стоить вам дороже, чем размещен.


    Параллельное соединение 12 В

    Бывают случаи, когда вам требуется более продолжительное питание, но при этом вы хотите поддерживать подачу только 12 вольт. Например, на больших судах с несколькими электрическими устройствами, одновременно требующими питания, вы увидите две, если не больше батареи глубокого цикла, соединенные вместе.. Вы можете сделать это путем «параллельного соединения» двух или более 12-вольтных батарей. Это приложение также часто встречается в жилых автофургонах. Ниже представлена ​​схема того, как это можно сделать:


    10 самых популярных страниц PFT



    Можно ли использовать 3 батареи по 12 вольт в гольф-мобиле на 36 вольт?

    Если у вас есть 36 вольтовая тележка для гольфа , которая работает от шести 6- -вольтных батарей , , вы можете заменить их тремя 12 -вольтовыми батареями , которые часто легче . находка.

    Нажмите, чтобы увидеть полный ответ


    Учитывая это, можно ли использовать 3 батареи 12 В в гольф-мобиле 36 В?

    Вы можете использовать 3 батареи / 12 В последовательно с по для создания источника питания 36 В . Однако этому источнику будет не хватать мощности по силе тока и способности к глубокому разряду. В результате будет иметь низкое время работы и сократит срок службы батареи . батареи должны быть гольф-кар конкретные батареи .

    Аналогичным образом, можно ли вставить 48-вольтовые аккумуляторы в 36-вольтовый гольф-мобиль? Да, но эффективно и просто. Однако, хотя и можно модернизировать эти автомобили до электронного управления скоростью на уровне 36V или 48V , я не рекомендовал бы и из-за затрат, связанных с переоборудованием. Вы можете купить современную тележку 48V за гораздо меньшие деньги, чем преобразование 36v в 48V .

    Во-вторых, можно ли использовать гольф-кар на 12 вольтовых батареях?

    A 12 вольт глубокого разряда аккумулятор обеспечивает питание для запуска и приведения в движение электрической тележки для гольфа . Поскольку электрические тележки для гольфа не имеют генератора переменного тока для подзарядки батареи в используют , как и в случае с грузовиками и легковыми автомобилями, необходима батарея глубокого цикла , чтобы тележка работала в течение долгого дня. по ходу.

    Могу ли я использовать в моем гольф-мобиле обычные аккумуляторы глубокого разряда?

    Технический ответ: Да. Можно использовать , морской аккумулятор вместо электрических аккумуляторов для гольф-каров . Обе они технически представляют собой гелевые свинцово-кислотные батареи , предназначенные для глубоких циклов , сообщает It Still Runs. Однако это сходство не означает, что они должны быть , а — взаимозаменяемыми.

    В чем разница в аккумуляторных системах?

    Клинт Демеритт 31 марта 2021 г.

    Все мы обычно используем батареи в повседневной жизни.Будь то пульт дистанционного управления, часы, автомобиль или дом на колесах, батарейки являются частью нашей жизни. В большинстве случаев нам не нужно думать о напряжении батареи. Однако при работе с системами питания постоянного тока для лодок на колесах или автономных приложений необходимо принять серьезное решение между 12 В и 24 В.

    В этой статье мы обсудим системы на 12 В и 24 В, а также различия между батареями на 12 В и 24 В. Давай займемся этим!

    В чем разница между операционными системами на 24 В или 12 В?

    Какое напряжение в электрической системе автомобиля, жилого дома или лодки?

    В большинстве автомобилей, внедорожников и лодок используется 12-вольтовая электрическая система, хотя есть некоторые исключения.Итак, когда используются батареи 12 В против 24 В?

    Чтобы понять больше о батареях, мы должны сначала понять, что такое вольт или напряжение. Напряжение — это величина электрического давления, необходимого для проталкивания электрического тока. Взгляните на , что такое вольт, чтобы лучше понять эту концепцию.

    В большинстве автомобилей используются системы на 12 В, и вы увидите, что это отображается как 12 В

    Что означает «12 В»?

    12 В говорит нам, что батарея подает 12 вольт при номинальной нагрузке.Тот же принцип действует и для батарейного блока на 24 В, поскольку он обеспечивает 24 В.

    Как мы обсуждали ранее, большинство аккумуляторов автомобилей и жилых автофургонов рассчитаны на 12 В.

    Аккумуляторы

    12 В используются в большинстве транспортных средств, поскольку электрические компоненты, такие как стартер, система освещения и зажигания, рассчитаны на работу от напряжения 12 В.

    Номинальное напряжение аккумулятора 12 В — это номинальное напряжение, которое может быть немного выше или ниже в зависимости от состояния заряда и нагрузки.

    Иногда мы используем аккумуляторные системы на 24 В в больших грузовиках и автобусах из-за более высоких требований к мощности и длинных кабельных трасс.Вы также можете увидеть, как 24 В используются на более крупных лодках и некоторых домах на колесах с продуманными солнечными системами.

    Еще одно типичное применение системы 24 В — это троллинговые двигатели для рыболовных судов.

    Как устроена система на 24 В?

    Система 24 В — это система, в которой вы производите 24 В при номинальной нагрузке. Есть несколько способов создать систему питания на 24 В. Один из способов — купить аккумулятор на 24 В. Другой — использовать последовательно две батареи на 12 В для создания системы на 24 В. Давайте рассмотрим эти варианты более подробно.

    Что такое аккумулятор на 24 В?

    Один из способов создать систему на 24 В — использовать батарею на 24 В. Батареи на 24 В встречаются реже, чем их аналоги на 12 В, и их труднее найти. Аккумуляторы на 24 В также относительно дороги.

    Батарея, рожденная в битвах 24 В

    Однако они занимают меньше места, чем другие батареи, идущие последовательно. Так что, если пространство вызывает беспокойство, вам может подойти одна батарея на 24 В.

    ↳ Нажмите здесь, чтобы ознакомиться со спецификациями наших батарей Battle Born на 12 В и батарей Battle Born на 24 В.

    Как подключить батареи 12 В последовательно?

    Самый распространенный метод построения системы на 24 В — это последовательное включение батарей.

    Последовательное включение батарей означает, что у них есть один электрический путь, равный сумме вольт системы. Итак, если у вас есть две батареи на 12 В, соединенные последовательно, то 2 x 12 В = 24 В.

    Чтобы создать систему на 24 В с использованием двух батарей 12 В, вы должны подключить положительный полюс «+» первой батареи к отрицательной клемме «-» второй батареи.Остальные отрицательные и положительные соединения подключаются к компоненту, который вы хотите запитать, так же, как если бы вы использовали одну батарею. Вы можете сделать то же самое, используя четыре 6-вольтовых батареи.

    Последовательное соединение двух 12-вольтных батарей дает 24 вольта на обоих.

    Чтобы облегчить понимание, давайте посмотрим на то, с чем мы все знакомы, — на фонарик. Многие фонарики используют батареи, которые работают последовательно. Предположим, у вас есть большой фонарик, в котором используются четыре батарейки размера «C».

    Батарейки при установке находятся в один ряд с минусом, касающимся плюса. Это последовательная схема. Каждая из батарей типа «C» рассчитана на 1,5 В. Ранее мы узнали, что когда батареи работают последовательно, выходное напряжение складывается из суммы. В этом случае фонарь работает от 6 вольт.

    Почти все батареи с напряжением выше 2 В состоят из нескольких последовательно соединенных ячеек. Даже у 9-вольтовых батарей, используемых в ваших детекторах дыма, есть несколько ячеек, которые вы можете увидеть, если откроете одну.

    Сравнение 12 В и 24 В — преимущества каждого

    При сравнении систем с напряжением 12 В и 24 В у каждого типа системы есть свои плюсы и минусы. Давайте взглянем на некоторые из преимуществ каждого из них.

    Преимущества системы 12 В

    Как мы уже говорили ранее в статье, системы на 12 В довольно распространены. В большинстве транспортных средств используются системы 12 В, поскольку компоненты, используемые в транспортных средствах, рассчитаны на работу от 12 В. Генераторы вырабатывают 12 В для зарядки аккумулятора.

    Когда дело доходит до жилых автофургонов, большинство бытовых приборов, таких как холодильники для автофургонов и все освещение, также работают от 12 В.Для систем на 12 В требуется только одна батарея, и они хорошо подходят для приложений с низким энергопотреблением и коротких проводов.

    Системы на 12 В великолепны своей простотой и тем, что с ними работает большинство бытовых приборов. К ним также легко подключить небольшие солнечные системы.

    Преимущества системы 24 В Системы

    24 В выгодны тем, что можно использовать провода меньшего диаметра и снизить силу тока в два раза. Использование провода меньшего диаметра может снизить затраты на проводку и уменьшить пространство, необходимое для прокладки проводки.Это особенно важно там, где требуется длинная проволока.

    Но подождите, как можно протянуть провод меньшего размера с большим напряжением?

    На самом деле вы можете проложить провод в 2 раза меньше, чем эквивалентная цепь 12 В. Это связано с тем, что более высокое напряжение требует меньшего тока для получения такой же мощности. Поскольку мы используем меньший ток или ток, мы можем использовать провод меньшего размера. По этой же причине мощность передается по линиям электропередач при очень высоких напряжениях. Провода могут быть намного меньше по размеру и передавать намного больше энергии!

    При создании более крупных портативных солнечных систем очень выгодно использовать более высокое напряжение, например 24 или 48 вольт.Это установка Geo Astro RV с тысячами ватт солнечной энергии.

    Помимо проводов меньшего диаметра, системы на 24 В более эффективно работают в двигателях и инверторах. Часто один и тот же контроллер заряда солнечной батареи, работающий от 24 В против 12 В, будет обрабатывать вдвое больше солнечной энергии.

    Сравнение 12 В против 24 В, минусы каждого

    Поскольку у систем с напряжением 12 В и 24 В есть свои плюсы, у каждого типа системы есть и минусы. Некоторые плюсы одной системы могут превратиться в минусы другой.

    Недостатки 12В Для систем

    12 В при работе с большими нагрузками требуются массивные провода, потому что ток (в амперах) выше.Как мы уже узнали, системы на 24 В уменьшают ток или ток в два раза, тогда обратная сторона системы 12 В — сила тока вдвое больше, чем у системы 24 В при той же мощности.

    При напряжении 12 В необходимы очень большие кабели для мощных устройств, таких как инверторы, в этом случае используются 2 кабеля для правильного управления током. Если бы это была 24-вольтовая система, потребовались бы только эти кабели.

    Поскольку 12-вольтовые батареи потребляют вдвое большую силу тока при заданном энергопотреблении, они менее эффективны, чем 24-вольтовые батареи, из-за резистивных потерь.

    Недостатки 24В

    Если вы используете систему на 24 В в приложении с приборами на 12 В, вам понадобится преобразователь для понижения напряжения до 12 В. Разнообразие компонентов и устройств, работающих от 24 В, не так много, как от 12 В.

    Это 24-вольтовая система, установленная в доме на колесах, и требуется дополнительное оборудование. Это преобразователь постоянного тока 24 В в 12 В. Хотя это очень хорошо работает для обеспечения стабильного напряжения, это требует дополнительных затрат и приводит к потере энергии на 4%.

    Хотя вы можете заряжать аккумулятор на 12 В с помощью генератора автомобиля, вы не сможете этого сделать с системой на 24 В, если шасси — это система на 12 В. Для выполнения этой задачи необходимы дополнительные преобразователи постоянного тока в постоянный.

    Когда использовать систему 12 В по сравнению с системой 24 В

    Теперь, когда мы немного узнали о системах с напряжением 12 В и 24 В, нам нужно понять, когда следует использовать одну систему вместо другой.

    При создании системы аккумуляторов постоянного (постоянного тока) очень важно понимать требования к питанию для работы необходимых вам приборов.Энергия, потребляемая устройством, измеряется в ваттах. Как только вы узнаете свою требуемую мощность, вы сможете определить, какая система требуется.

    Если ваши требования ниже 3000 Вт, вы можете обойтись системой 12 В.

    Многие рекомендуют системы на 24 В, когда ваши потребности в электроэнергии превышают 3000 Вт или генерируют 3000 Вт солнечной энергии или более. Когда вы дойдете до этого момента, преимущества системы 24 В перевешивают недостатки, потому что вы можете работать меньше и повышать эффективность системы.

    Если ваша потребляемая мощность еще выше, выше 6000 Вт, вы можете воспользоваться еще большей системой постоянного тока и рассмотреть возможность повышения до 48 В.

    Преимущества 24 В постоянного тока для солнечной энергии

    Многие контроллеры заряда солнечных батарей DC MPPT имеют возможность более высокого напряжения для работы с более высокими напряжениями панели. Однако у них есть жесткое ограничение по току.

    При использовании контроллера заряда на 50 А на батарее 12 В, вы можете использовать контроллер с 700 Вт солнечной энергии.Если вы используете тот же контроллер заряда в аккумуляторной системе 24 В, он может подключаться к солнечным панелям мощностью 1400 Вт. Это означает, что требуется половина контроллеров заряда солнечной энергии. Они также будут более эффективно работать при напряжении 24 вольт.

    Это контроллеры заряда, которые питают систему мощностью 4000 Вт при 24 В. Для системы на 12 В потребуется вдвое больше.

    12 В против 24 В, что мне подходит?

    Это не всегда однозначное решение. При определении наилучшего выбора необходимо учитывать множество переменных.

    Теперь, когда мы лучше понимаем эти системы, они не так устрашающи, как мы изначально думали. Независимо от того, используете ли вы систему 12 В или 24 В, теперь вы понимаете различия. Вы можете оценить свои потребности и принять обоснованное решение.

    Хотите узнать больше об электрических системах и литиевых батареях?

    Мы знаем, что строительство или модернизация электрической системы может быть сложной задачей, поэтому мы здесь, чтобы помочь. Наши специалисты по продажам и обслуживанию клиентов из Рино, штат Невада, готовы ответить на ваши вопросы по телефону (855) 292-2831!

    Также присоединяйтесь к нам в Facebook, Instagram и YouTube, чтобы узнать больше о том, как системы с литиевыми батареями могут способствовать вашему образу жизни, увидеть, как другие построили свои системы, и обрести уверенность, чтобы выйти и остаться в стороне.

    Присоединяйтесь к нашему списку контактов

    Подпишитесь сейчас на новости и обновления в свой почтовый ящик.

    Одна батарея на 36 В или три на 12 В? Плюсы и минусы

    Несколько лет назад, когда приложение требовало 36 вольт, лучшим вариантом было подключить три батареи на 12 В последовательно. Но теперь, когда на рынке появились батареи на 36 В, вы можете задаться вопросом, может ли использование всего одной батареи «плавать» вашу лодку лучше.(Буквально для тех, кому они нужны для питания троллинговых двигателей!)

    Вот пример. Допустим, вашему троллинговому двигателю или другому устройству требуется 36 вольт и 50 Ач. Вы можете заменить одну батарею на 36 В, 50 Ач, на три батареи на 12 В, 50 А · ч, соединенные последовательно. Но правильный ли это путь?

    Это зависит от источника питания, типа используемой батареи и личных предпочтений. Во-первых, давайте посмотрим, как тип батареи может повлиять на ваш выбор.

    Какой тип батареи на 36 вольт вы используете?

    Для некоторых типов батарей выбор между тремя батареями на 12 В и одной батареей на 36 В может иметь большее значение.Например, свинцово-кислотные батареи необходимо часто проверять и доливать дистиллированную воду, поэтому вы можете предпочесть следить только за одной батареей вместо трех.

    Но если вы выбрали литий, вы вообще откажетесь от обслуживания. Таким образом, обслуживание батарей не будет важным фактором, когда дело доходит до выбора между тремя батареями на 12 В или одной батареей на 36 В.

    А если говорить о литии… как о новейшей технологии в производстве аккумуляторов, он превосходит во всех отношениях. И три батареи на 12 В, и одна литиевая батарея на 36 В обеспечат питание в два раза дольше, чем обычные батареи.

    Вот некоторые из других преимуществ, которые вы получаете, просто выбирая литий:

    • Не требует обслуживания.
    • Более быстрое время зарядки, чем у обычных батарей (2 часа или меньше).
    • Не содержит токсинов, не протекает и безопасно для хранения в помещении.
    • Три литиевые батареи 12 В или литиевая батарея 36 В будут весить на 70% меньше, чем аналогичные установки других типов батарей.
    • Сила тока остается постоянной, даже если срок службы батареи составляет менее 50%.
    • Скорость разряда, когда она не используется, составляет всего 2% в месяц (для свинцово-кислотных аккумуляторов ставка составляет 30%).

    Три литиевые батареи 12 В и литиевая батарея 36 В

    Итак, вы выбрали литий. А теперь перейдем к актуальному вопросу. Стоит ли использовать одну батарею на 36 В для питания троллингового двигателя / другого оборудования? Или три батарейки на 12В?

    Правда, оба варианта хорошо работают с литием! Таким образом, можно сказать, что единственные «за» и «против» основаны на потребностях конкретного приложения и личных предпочтениях. Вот разница между батареей на 36 В и батареей.три батареи на 12 вольт:

    Плюсы и минусы использования трех литиевых батарей 12 В

    Плюсы: Один из аргументов в пользу использования трех батарей по 12 штук в серии заключается в том, что если одна из них выйдет из строя, ее легко заменить. Кроме того, у вас будет больше гибкости при размещении батарей в вашем приложении. Это может быть полезно для тех, кто хочет распределить вес в лодке.

    В отличие от батареи на 36 В, вам не понадобится специальное зарядное устройство для аккумуляторов 12 В. Они также могут помочь при запуске двигателя.

    Минусы: Чем больше у вас батарей, тем больше у вас точек подключения. Вам придется смонтировать и подключить каждое из них, и каждое открытое соединение является потенциальным источником ненадежности.

    Плюсы и минусы использования одной литиевой батареи 36 В

    Плюсы: Самым очевидным преимуществом выбора одной батареи на 36 В является то, что она всего одна! Одна легкая батарея (если она литиевая) для установки и хранения. Всего один набор кабелей для подключения, меньше точек подключения, о которых нужно беспокоиться, и меньше беспорядка, о котором можно споткнуться.

    Еще одним плюсом является тот факт, что батареи на 36 В работают по принципу «подключи и работай». Вам не нужно придумывать, как последовательно соединить три батареи на 12 В для получения более высокого напряжения.

    Но самым важным преимуществом для многих может быть то, что использование всего одной батареи 36 В экономит место! Это отлично подходит для рыбацких лодок, где на счету каждый дюйм пространства. Это одна из причин, почему они популярны для использования с мощными троллинговыми двигателями.

    Минусы: Вам понадобится специальное зарядное устройство для литиевой батареи на 36 В.Зарядные устройства на 12 В более распространены на рынке, но они никуда не годятся.

    Прочие соображения

    А как насчет цены батареи на 36 В по сравнению с тремя батареями на 12 В? Будет ли один вариант вернуть вам больше с трудом заработанных денег, чем другой? Возможно нет. Хотя батареи на 12 В менее дороги, вам придется купить три из них, чтобы получить необходимую мощность. И если вам не понадобится новое зарядное устройство, стоимость батареи на 36 В будет лишь немного выше.

    Суть в том, что оба варианта работают нормально.Нет большой разницы между использованием трех батарей на 12 В или одной батареи на 36 В с точки зрения преимуществ и недостатков, если вы используете литий. Выберите настройку, которая лучше всего подходит для вашего приложения и потребностей.

    И еще несколько хороших новостей — у нас есть оба варианта! Купите нашу новую литиевую батарею 36 В здесь или посмотрите литиевые батареи на 12 В здесь.

    Узнайте больше о литиевых батареях здесь:

    Общие сведения о конфигурациях батарей | Аккумулятор

    Что такое банк батарей? Нет, аккумуляторные банки — это не какие-то финансовые учреждения.Блок батарей — это результат соединения двух или более батарей вместе для одного приложения. Что это дает? Ну, подключив батареи, вы можете увеличить напряжение, силу тока или и то, и другое. Когда вам нужно больше мощности, вместо того, чтобы обзавестись огромным супертанкером с батареей для дома на колесах. Например, вы можете построить аккумуляторную батарею, используя мощную аккумуляторную батарею AGM для автофургона, кемпинга или прицепа.

    Первое, что вам нужно знать, это то, что существует два основных способа успешного соединения двух или более батарей: первый — через серию, а второй — параллельный.Начнем с метода серий, сравнивая серию и параллель.

    Как подключить батареи последовательно: При последовательном подключении батарей добавляется напряжение двух батарей, но сохраняется одинаковая сила тока (также известная как ампер-часы). Например, эти две 6-вольтовые батареи, соединенные последовательно, теперь вырабатывают 12 вольт, но их общая емкость по-прежнему составляет 10 ампер.

    Для последовательного соединения батарей используйте перемычку для соединения отрицательной клеммы первой батареи с положительной клеммой второй батареи.Используйте другой набор кабелей для подключения открытых положительных и отрицательных клемм к вашему приложению.

    При подключении аккумуляторов: Никогда не перекрещивайте оставшиеся открытые положительный и открытый отрицательный полюсы друг с другом, так как это приведет к короткому замыканию аккумуляторов и вызовет повреждение или травму.

    Убедитесь, что подключаемые батареи имеют одинаковое напряжение и емкость. В противном случае у вас могут возникнуть проблемы с зарядкой и сокращение срока службы батареи.

    Как подключить батареи параллельно: Другой тип подключения — параллельно.Параллельное соединение увеличит ваш номинальный ток, но напряжение останется прежним. На «параллельной» диаграмме мы вернулись к 6 вольт, но ампер увеличился до 20 Ач. Важно отметить, что из-за увеличения силы тока аккумуляторов вам может потребоваться более прочный кабель, чтобы кабели не перегорели.

    Чтобы соединить батареи параллельно, используйте перемычку для соединения положительных клемм и другую перемычку для соединения отрицательных клемм обеих батарей друг с другом.Отрицательный к отрицательному и положительный к положительному. Вы МОЖЕТЕ подключить нагрузку к ОДНОЙ из батарей, и она будет разряжать обе батареи одинаково. Однако предпочтительный метод поддержания уровня заряда батарей — это подсоединение к плюсу на одном конце аккумуляторного блока и к минусу на другом конце блока.

    Также возможно подключение аккумуляторов последовательно и параллельно. Это может показаться запутанным, но мы объясним ниже. Таким образом вы можете увеличить выходное напряжение и номинальный ток в ампер / час.Чтобы сделать это успешно, вам понадобится как минимум 4 батареи.

    Если у вас есть два набора батарей, уже подключенных параллельно, вы можете соединить их вместе, чтобы сформировать серию. На диаграмме выше у нас есть аккумуляторная батарея, которая выдает 12 вольт и рассчитана на 20 ампер-часов.

    Не теряйся сейчас. Помните, что электричество проходит через параллельное соединение так же, как и в одиночной батарее. Он не заметит разницы. Таким образом, вы можете последовательно соединить два параллельных соединения, как две батареи.Требуется только один кабель; мост между положительной клеммой одного параллельного банка и отрицательной клеммой другого параллельного банка.

    Это нормально, если к терминалу подключено более одного кабеля. Необходимо успешно строить такие аккумуляторные батареи.

    Теоретически вы можете подключить столько батарей, сколько захотите. Но когда вы начинаете собирать путаницу из батарей и кабелей, это может сбивать с толку, а путаница может быть опасной.Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи той же мощности. По возможности избегайте смешивания и соответствия размеров батарей.

    Всегда помните о безопасности и следите за своими связями. Если это поможет, сделайте схему ваших батарейных блоков, прежде чем пытаться их построить. Удачи!


    Краткий справочник по словарю:

    AMP-час — это единица измерения электрической емкости аккумулятора.Стандартный номинал усилителя рассчитан на 20 часов.

    Напряжение представляет собой давление электричества. Некоторые приложения требуют большего «давления», что означает более высокое напряжение.

    Выберите более мощный аккумулятор

    Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

    Как подключить 12-вольтные фары к 36-вольтовой тележке для гольфа (8 ступеней)

    Хотя некоторые модели гольфмобилей поставляются с фарами и задними фонарями, они обычно стоят дороже и даже могут быть довольно редкими.

    Тем не менее, владельцы тележек для гольфа могут без труда установить эти фонари на свои тележки, если они понимают этот процесс.

    К счастью, у разных производителей он обычно достаточно однороден, и вам не нужно выполнять какие-либо специальные действия для этих моделей.

    Тем не менее, большинство светильников, которые вы устанавливаете, требуют питания 12 вольт — это не проблема, если ваша тележка 12-вольтовая модель, но большинство тележек в наши дни — 36-вольтовые.

    В результате вам необходимо тщательно подготовиться к этой проблеме и принять меры, чтобы избежать проблем с электричеством.

    К счастью, вам нужно сделать лишь несколько шагов, чтобы получить хорошие результаты.

    Как подключить 12-вольтные фары к 36-вольтовой тележке для гольфа

    1. Подготовка к этому процессу

    Когда вы подключаете 12-вольтовые лампы к 36-вольтовой тележке, вы должны предпринять несколько шагов, чтобы этот процесс прошел гладко.

    Вы должны начать с того, что поставите вашу тележку в парк или нейтраль — в зависимости от того, какой вариант доступен — и положите кирпичи позади и перед колесами.

    Это поможет предотвратить ненужное перемещение тележки и сделает вашу работу максимально безопасной.

    Теперь вам нужно убедиться, что вы нашли аккумуляторные батареи тележки и отсоединили их, чтобы не допустить поражения электрическим током.

    Обычно их можно найти под сиденьем тележки, хотя они могут быть и в других местах.

    Отсоедините отрицательную клемму от каждой тележки и изолируйте провод от положительной клеммы, чтобы избежать искр, которые вместо этого могут вызвать повышенный риск возгорания.

    Кроме того, вам нужно собрать все свои предметы и инструменты, чтобы убедиться, что вы можете получить качественную установку.

    Вам нужно будет найти монтажный комплект, специально разработанный для вашей модели тележки — он обычно доступен у большинства производителей гольф-каров и часто поставляется с множеством инструментов, которые вы можете использовать для безопасной и контролируемой установки ваших фонарей. и без всяких затруднений.

    Вам также понадобится набор отверток со стандартными опциями и опциями Philips, набор сверл с соответствующими битами и многое другое.

    Вам также может понадобиться пластиковый контейнер или мешок, который можно использовать для сбора винтов или других предметов, которые могут потребоваться для установки.

    Также может потребоваться вольтметр, чтобы проверить заряд аккумулятора вашей тележки и индикаторов, чтобы убедиться, что нет никаких проблем.

    2. Решите, где вы хотите установить светильники

    Теперь вам нужно выбрать, где вы хотите установить фары и задние фонари на вашем гольф-мобиле.

    Здесь вы можете выбрать несколько различных вариантов.

    Многие люди размещают их в довольно стандартном порядке, размещая их на крайних краях спереди и сзади.

    Однако вам не нужно класть их сюда, если вы хотите разместить их в другом месте.

    Тем не менее, если вы используете монтажный комплект — разумный выбор для установки 12-вольтовых ламп на 36-вольтовую тележку — вы будете ограничены в том, где вы можете разместить свои фонари.

    Это потому, что эти комплекты имеют особый дизайн, которому вы должны следовать.

    И это включает размещение источников света в нужном им положении.

    Является ли эта потеря выбора хорошим компромиссом для облегчения работы по установке фонарей?

    Мы так считаем, потому что монтажный комплект помогает максимально упростить этот процесс для нужд человека.

    Им не нужно беспокоиться о таких вещах, как сверление в неправильном месте или электрические ошибки, из-за которых их свет не работает.

    Вместо этого они могут использовать шаблон и направления набора, чтобы обеспечить максимально плавный процесс монтажа.

    Поместите шаблон для крепления фар спереди тележки — он должен прилегать к тележке в зависимости от его размера и конструкции.

    Затем вы можете карандашом или ручкой нарисовать место, где вы хотите добавить свет.

    Проделайте то же самое с задними фонарями, и вы почти готовы начать сверление отверстий.

    3. Просверлите монтажные отверстия

    Теперь наступает одна из самых сложных частей этого процесса — сверление монтажных отверстий.

    Несмотря на то, что ваш шаблон должен помочь вам узнать, где просверлить отверстия, вам необходимо убедиться, что вы выбрали правильное сверло, аккуратно удерживайте сверло на месте и обеспечьте достаточное давление, чтобы пробить металл или пластик и дать вам монтажные отверстия, которые вам нужны.

    Мы предлагаем использовать сверло диаметром 5/16 дюйма для этого процесса.

    Вам нужен этот размер, потому что он чуть больше четверти дюйма и дает вам достаточно места не только для света, но и для кабелей.

    При сверлении вам нужно сильно прижимать, но в большинстве случаев пусть сверло сделает свою работу.

    Если вы нажмете слишком сильно, бит может отклониться в сторону и повредить те участки тележки, которые необходимо оставить в целости и сохранности.

    После того, как вы просверлили все отверстия — минимум четыре для двух фар и двух задних фонарей — важно пропустить комплект света через монтажные отверстия.

    В этот комплект входят кабели, которые вы будете использовать для подключения 12-вольтовых фонарей к 36-вольтовой тележке для гольфа.

    Свяжите эти кабели с помощью прилагаемых кабельных стяжек и убедитесь, что они надежно закреплены, прежде чем переходить к следующему шагу.

    Тем не менее, мы повторяем, НЕ следует пока прикреплять фары к каким-либо электрическим элементам вашего двигателя.

    Мы понимаем наше желание, но не можем рекомендовать его, потому что установка еще не завершена.

    И добавление электричества к кабелям на этом этапе может вызвать у вас электрический шок, если вы не будете осторожны — и, хотя это не опасно, удар может повредить ваши фары и вашу тележку.

    4. Присоедините жгут света

    На этом этапе вы почти готовы добавить свои фонари в корзину.

    Но сначала нужно аккуратно прикрепить их к обвязке.

    Этот жгут — важная часть этого процесса, потому что он включает в себя все провода, необходимые для освещения вашей тележки.

    Ремень необходимо вставить в отверстия, как упоминалось ранее, чтобы вы могли выполнить следующий шаг.

    Начните этот шаг с прикручивания лампочек к соответствующей области крепления на жгуте.

    Вы легко найдете это место, потому что оно похоже на обычную розетку лампы.

    Прикрутите фары на место, и вы почти готовы приступить к остальной части процесса.

    А вот и самая важная часть этого процесса — добавление редуктора на 36-12 вольт к жгуту проводов освещения.

    Эта деталь имеет решающее значение, потому что она берет 36 вольт от батареи вашей тележки и делает более управляемым 12 вольт.

    Это помогает предотвратить перегрузку света и предотвращает поломку тележки или возникновение других проблем в работе.

    Эта деталь должна быть включена в вашу корзину — в противном случае вам необходимо заказать ее, прежде чем вы продолжите работу.

    Получив эту деталь, вы прикрепляете ее к электрическому соединению жгута непосредственно перед тем, как прикрепить ее к батарее.

    Теперь вы почти готовы добавить источники света в отверстия, которые вы просверлили ранее.

    Это позволит вашей тележке работать плавно и эффективно с вашими фарами.

    5. Добавьте светильники в отверстия

    На этом этапе ваша подвеска полностью подготовлена, и ваши фары вставлены в розетки.

    Что не менее важно, у вас есть 12-вольтный редуктор, который сохранит вашу электрическую ситуацию безопасной и разумной.

    Однако ваши фары все равно будут находиться вне вашей тележки.

    Теперь, когда вы их поставите на место.

    Сделать это довольно просто, но требуется несколько осторожных шагов, чтобы избежать путаницы.

    Осторожно вставьте остатки жгута освещения и его проводов в отверстие и вдавите свет в отверстие.

    Если вы просверлили монтажное отверстие правильно, ваш светильник должен без труда оставаться на месте.

    Возможно, вам придется пройти под тележкой и потуже затянуть свет в отверстие.

    Некоторые даже используют инструменты для внутреннего монтажа, чтобы удерживать их на месте, но вам может не понадобиться, если вы использовали кабельные стяжки для удержания проводов на месте ранее.

    Вышеуказанные шаги относятся только к вашим фарам, и их должно быть более чем достаточно, чтобы подготовить их к работе.

    Однако вам также необходимо убедиться, что вы правильно установили задние фонари.

    К счастью, для большинства людей этот шаг не так уж и сложен.

    Вам нужно будет вставить жгут задних фонарей в просверленные отверстия, как вы это делали ранее с фарами.

    После того, как вы аккуратно вставили жгут таким образом, вы можете подсоединить его к остальной проводке с помощью готовых защелкивающихся соединителей.

    Это гарантирует, что ваши фонари будут работать вместе и работать максимально плавно без каких-либо проблем.

    Теперь вы можете вкрутить лампы задних фонарей в соответствующие гнезда и вдавить их в просверленные отверстия для правильной установки.

    6. Просверлите монтажные отверстия для коммутатора

    Ваши фонари почти готовы к работе, но у вас есть один небольшой недостаток — у вас нет выключателя!

    Переключатель необходим для управления осветительными приборами и обеспечения их правильной работы.

    К счастью, в вашем монтажном комплекте должна быть простая панель, которую вы можете использовать для управления освещением.

    Однако этот выключатель необходимо установить, прежде чем вы сможете включить свет тележки.

    Найдите выключатель света и поместите его поблизости на случай, когда он понадобится.

    Теперь наденьте сверло 15/32 дюйма на сверло и найдите место, где вы хотите добавить переключатель.

    Место, которое вы выберете, не имеет большого значения, но должно быть выполнено на вашей панели.

    Найдите пустую область, не имеющую другого назначения для вашей тележки — часто производители помещают эти панели сюда, чтобы предоставить вам место для добавления новых товаров в вашу тележку.

    Просверлите панель и снимите бит.

    Теперь вы можете осторожно вставить переключатель в это отверстие.

    Убедитесь, что вы правильно выровняли его на тележке как по горизонтали, так и по вертикали, чтобы избежать каких-либо проблем.

    Обычно вы можете наблюдать за этим процессом, но, возможно, захотите получить уровень, который поможет.

    В любом случае, вам необходимо закрепить выключатель света гайкой и шайбой, чтобы удерживать его на месте.

    И прежде чем двигаться дальше, мы предлагаем отключить выключатель, чтобы предотвратить случайный электрический разряд.

    Хотя эта проблема возникает редко и не должна вызывать особого беспокойства, убедитесь, что выключатель выключен, чтобы предотвратить ее появление.

    Если переключатель включен, при выполнении остальных действий может произойти сотрясение или вероятность его поражения.

    Не включайте переключатель, пока мы не скажем об этом здесь.

    7. Присоедините переключатель

    Теперь, когда вы установили выключатель, пора прикрепить его к жгуту освещения.

    К счастью, этот процесс довольно прост и не требует большого количества шагов.

    К концу коммутатора должен быть прикреплен защелкивающийся разъем, который можно использовать для прямого подключения к линии.

    После того, как этот провод будет правильно подключен, ваш осветительный жгут готов к подключению к батарее.

    Теперь вы понимаете, почему мы попросили вас подождать до конца, чтобы прикрепить жгут к батарее?

    Если бы вы сделали это раньше, велика вероятность, что в этот момент вы испытаете неожиданный шок.

    Кроме того, на этом этапе проще прикрепить ремень к батарее, потому что вы уже будете работать с переключателем и будете находиться под капотом — в результате вы можете сэкономить много времени и энергии.

    Начните с подсоединения отрицательного провода от редуктора напряжения к батарейному блоку внутри вашей тележки.

    Вы всегда должны сначала подсоединять отрицательную клемму, чтобы избежать риска поражения электрическим током.

    И вы должны убедиться, что вы прикрепили кабель к последней батарее в банке — это ячейка, используемая для прикрепления новых предметов к вашей тележке.

    Теперь вы можете добавить плюсовую клемму и аккуратно прикрутить их на место.

    Вот классная вещь — вы почти закончили!

    Теперь ваш жгут освещения обеспечивает электричеством ваши светильники в зависимости от положения переключателя и обеспечивает стабильный и постоянный поток энергии.

    А с включенным редуктором ваша тележка и фары должны оставаться прочными и не иметь проблем с повреждениями, о которых можно вообще беспокоиться.

    Однако вам необходимо протестировать коммутатор, чтобы убедиться, что вы не допустили ошибок при установке.

    8. Завершение работы с тележкой

    Этот последний шаг в основном касается подготовки вашей тележки к нормальной работе.

    Это начинается с того, что вы тщательно повторно подключаете все отрицательные клеммы.

    Обратите внимание на расположение этих проводов, чтобы убедиться, что они идут к нужной батарее.

    Вы можете пометить их, чтобы избежать такой путаницы, хотя кабели батареи должны быть довольно очевидными и не слишком сложными для понимания в этой ситуации.

    Когда все клеммы аккумулятора будут подключены, снимите ленту с переключателя и включите его.

    Это важный момент!

    Если ваши фары включаются без задержки и ярко светят, установка завершена.

    Если они трясутся при включении, неожиданно тускнеют или не включаются вообще, есть проблема или две проблемы с проводкой и клеммами аккумулятора.

    Возможно, вам понадобится профессионал, который поможет вам исправить их, чтобы избежать дальнейших осложнений, таких как повышенный риск поражения электрическим током.

    Видео Пример подключения одной 12-вольтовой лампы к 36-вольтовой тележке для гольфа

    Батареи Часть 1 — 12 В, 24 В и 36 В

    Это первая часть из трех частей, посвященных батареям. В этой статье мы объясняем, как соединить батареи в последовательную и параллельную цепи, чтобы получить необходимое напряжение и желаемые ампер-часы.

    Первое, что следует помнить при работе с аккумуляторами и их настройке в различных конфигурациях, это то, что если вы не уверены в том, что делаете, обратитесь к электрику! Вокруг много морских и автоэлектриков, и они смогут во всем разобраться в кратчайшие сроки. Просто убедитесь, что они используют луженые провода, переключатели, вилки, автоматические выключатели и т. Д., Подходящие для морской среды.

    Эта статья будет представлять особый интерес для всех, кто собирается купить или владеет подвесным электродвигателем.Электродвигатели бывают разных размеров: самые маленькие, как правило, на 12 вольт, большие, с большей тягой, обычно на 24 вольта, а есть действительно большие, которые обычно на 36 вольт.

    Цепь серии

    Некоторые из вас могут подумать, что никогда не видели батарею на 36 вольт, и были бы совершенно правы. Если вам требуется 36 вольт, вам нужно будет соединить три батареи на 12 вольт в последовательную цепь, чтобы получить более высокое напряжение.

    Итак, в последовательной схеме мы можем увеличить напряжение на количество батарей.3 x 12 вольт равны 36 вольт, или 2 x 12 вольт равны 24 вольт.

    При соединении батарей в последовательную цепь вы увеличиваете только напряжение, а не доступные ампер-часы. Например, если бы использованные 12-вольтовые батареи были рассчитаны на 100 ампер-часов, общее количество ампер-часов для 36-вольтовой цепи все равно было бы 100 ампер-часов.

    Цепь серии

    Чтобы соединить батареи в последовательную цепь, подготовьте батареи, разъемы и кабели для батарей и убедитесь, что к батареям не подключены никакие приборы или что-либо еще.Возьмите соединительный кабель аккумулятора и протяните его от отрицательной клеммы одной батареи к положительной клемме другой батареи.

    Чтобы запустить устройство с более высоким напряжением, подсоедините красный или положительный кабель к пустой положительной клемме на одной из батарей, и у вас должна остаться пустая отрицательная клемма на другой батарее, к которой вы будете подсоединять черный или отрицательный кабель.

    Параллельная цепь

    Параллельная цепь

    Допустим, у вас есть 12-вольтовая батарея, которая работает от электричества в течение одного дня, но вы действительно хотите, чтобы она использовалась в течение двух дней, прежде чем снова потребуется заряжать батареи.Если у вас есть две 12-вольтовые батареи на 100 ампер-часов и подключить их в параллельную схему, вы получите 12 вольт и 200 ампер-часов. Три 12-вольтовых батареи по 100 ампер-часов каждая, включенные в параллельную цепь, конечно же, дадут нам 12 вольт и 300 ампер-часов.

    Чтобы подключить параллельную цепь, вам нужно еще раз убедиться, что к батареям ничего не подключено, и что у вас есть разъемы и кабели под рукой.

    Добавить комментарий

    Ваш адрес email не будет опубликован.